Phylogenetics, divergence times and diversification from three genomic partitions in monocots

KATE L. HERTWECK1,2*, MICHAEL S. KINNEY3, STEPHANIE A. STUART4, OLIVIER MAURIN5, SARAH MATHEWS6, MARK W. CHASE7, MARIA A. GANDOLFO8 and J. CHRIS PIRES3

Resolution of evolutionary relationships among some monocot orders remains problematic despite the application of various taxon and molecular locus sampling strategies. In this study we sequenced and analysed a fragment of the low-copy, nuclear phytochrome C (PHYC) gene and combined these data with a previous multigene data set (four plastid, one mitochondrial, two nuclear ribosomal loci) to determine if adding this marker improved resolution and support of relationships among major lineages of monocots. Our results indicate the addition of PHYC to the multigene dataset increases support along the backbone of the monocot tree, although relationships among orders of commelinids remain elusive. We also estimated divergence times in monocots by applying newly evaluated fossil calibrations to our resolved phylogenetic tree. Inclusion of early-diverging angiosperm lineages confirmed the origin of extant monocots c. 131 Mya and strengthened the hypothesis of recent divergence times for some lineages, although current divergence time estimation methods may inadequately model rate heterogeneity in monocots. We note significant shifts in diversification in at least two monocot orders, Poales and Asparagales. We describe patterns of diversification in the context of radiation of other relevant plant and animal lineages. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178, 375–393.

ADDITIONAL KEYWORDS: divergence time estimation – fossil calibration – molecular phylogenetics – monocotyledoneous plants.

*Corresponding author. Current address: University of Texas at Tyler, 3900 University Blvd, Tyler, TX 75799, USA. E-mail: khertweck@uttyler.edu

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
INTRODUCTION

Molecular phylogenetics has greatly improved our understanding of the evolution of monocotyledoneous plants. Nearly all studies have found support for monocots as a monophyletic group (e.g. Chase et al., 1993), and one found them well supported as sister to Ceratophyllum L. and eudicots (Saarela et al., 2007). APG III (2009) recognized 77 monocot families in 11 orders; Dasypogonaceae remains unplaced to order level. The two most recent and comprehensive molecular phylogenetic studies improved resolution and support for major lineages by pursuing different sampling strategies. Graham et al. (2006) used relatively few taxa with more loci from only the plastid genome, whereas Chase et al. (2006) utilized more comprehensive taxon sampling with fewer loci from plastid, mitochondrial and nuclear genomes. Both analyses provided strong support for monophyly of all monocot lineages as defined by APG III (2009). Some relationships among monocot orders are well supported; however, several higher relationships are resolved with only low to moderate support (Fig. 1). In particular, relationships among orders of commelinids (Poales, Commelinales, Zingiberales, Arecales, Dasypogonaceae) have proven difficult to elucidate (Givnish et al., 1999; Davis et al., 2004; Chase et al., 2006; Graham et al., 2006; Barrett et al., 2013).

Figure 1. Summary of previously hypothesized relationships among monocots (Chase et al., 2006; Graham et al., 2006). Numbers by nodes correspond to bootstrap values from Chase et al. (2006) and Graham et al. (2006), respectively. Open circles indicate fossil calibrations utilized by Anderson & Janssen (2009). Age estimates for nodes in the monocot phylogenetic tree are characterized by wide confidence intervals, due to variation in parameters used to date lineages and/or differences in the datasets (taxa and data; Sanderson & Doyle, 2001). In the case of monocots, major sources of variation include: limited taxon, molecular locus and fossil sampling; uncertainty surrounding fossil calibration points; and variability in methods used to infer divergence times. Use of complete plastome data from limited taxonomic sampling from across angiosperms placed the date of the origin of monocots between 140 and 150 Mya (Chaw et al., 2004; Leebens-Mack et al., 2005). Estimates of the age of extant monocots based exclusively on fossil evidence tend to be younger, c. 90 Mya (Crepet, Nixon & Gandolfo, 2004), although the ancestors of monocots were present from the Early Cretaceous (Smith, 2013). Reconciliation of variation in age estimates is confounded by the contentious nature of the monocot fossil record and a paucity of specimens compared with other angiosperm lineages (Crepet & Gandolfo, 2008; Friis, Crane & Pedersen, 2011). Inadequacy of this fossil record is generally attributed to the poor preservation of herbaceous material and a lack of synapomorphies in many specimens (Crepet et al., 2004).

Variation in methods similarly affects estimation of divergence times for lineages in the monocots (Table 1). The first comprehensive evaluation of monocot divergence times utilized extensive taxonomic sampling (878 taxa) of a single plastid locus (rbcL), eight fossil calibrations and non-parametric rate smoothing (NPRS) to date divergence of all major monocot lineages to the Early Cretaceous (Janssen & Bremer, 2004). Anderson & Janssen (2009) reanalysed this dataset with five additional fossil calibrations and the application of two new dating methods [penalized likelihood (PL) and PATHd8]. PATHd8 returned much younger divergence times for several monocot lineages, similar to other studies comparing divergence times resulting from these programs (Brown et al., 2008). Magallón & Castillo (2009) evaluated divergence times and diversification across angiosperms using a stricter set of criteria for fossil calibrations and implementation of a Bayesian relaxed molecular clock approach using BEAST; dates from this analysis were intermediate to the NPRS/PL and PATHd8 analyses. Bell, Soltis & Soltis (2010) conducted a similar analysis across angiosperms using BEAST and obtained substantially younger estimates for the emergence of crown groups in monocots (Table 1).
Table 1. Divergence times for the SL and CG of major monocot lineages

<table>
<thead>
<tr>
<th>Lineage</th>
<th>Janssen & Bremer, 2004</th>
<th>Anderson & Janssen, 2009</th>
<th>Magallón & Castillo, 2009</th>
<th>Bell et al., 2010 exponential, lognormal</th>
<th>This study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eight genes (plastid, mitochondrial, nrDNA, PHYC)</td>
<td>Relaxed clock (multidivtime) mean (95% CI)</td>
</tr>
<tr>
<td>Data utilized</td>
<td>One gene (plastid DNA)</td>
<td>One gene (plastid DNA)</td>
<td>Five genes (plastid and nrDNA)</td>
<td>PL (r8s) root 160 (140–180)</td>
<td>Relaxed clock (BEAST) root 160 (140–180)</td>
</tr>
<tr>
<td>Dating method (program)</td>
<td>NPRS (r8s)</td>
<td>PL (r8s)</td>
<td>Relaxed clock (BEAST)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Monocots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>134*</td>
<td>134*</td>
<td>127</td>
<td>130,146</td>
<td>130,146</td>
</tr>
<tr>
<td>SL</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>136,156</td>
<td>136,156</td>
</tr>
<tr>
<td>Commelinids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>120</td>
<td>120</td>
<td>115</td>
<td>96,103</td>
<td>118 (113–127)</td>
</tr>
<tr>
<td>SL</td>
<td>122</td>
<td>122</td>
<td>119</td>
<td>101,107</td>
<td>121 (116–130)</td>
</tr>
<tr>
<td>Acorales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>120</td>
<td>118 (113–127)</td>
</tr>
<tr>
<td>SL</td>
<td>134*</td>
<td>134*</td>
<td>127</td>
<td>130,146</td>
<td>130,146</td>
</tr>
<tr>
<td>Alismatales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>128</td>
<td>128</td>
<td>127</td>
<td>107,122</td>
<td>120 (115–129)</td>
</tr>
<tr>
<td>SL</td>
<td>131</td>
<td>131</td>
<td>126</td>
<td>116,136</td>
<td>128 (123–139)</td>
</tr>
<tr>
<td>Arecales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>110</td>
<td>110</td>
<td>N/A</td>
<td>31,33</td>
<td>37 (35–39)</td>
</tr>
<tr>
<td>SL</td>
<td>120</td>
<td>120</td>
<td>115</td>
<td>96,103</td>
<td>102 (98–109)</td>
</tr>
<tr>
<td>Asparagales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>119</td>
<td>118</td>
<td>113</td>
<td>92,103</td>
<td>110 (106–118)</td>
</tr>
<tr>
<td>SL</td>
<td>122</td>
<td>122</td>
<td>119</td>
<td>105,118</td>
<td>121 (116–130)</td>
</tr>
<tr>
<td>Commelininales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>110</td>
<td>107</td>
<td>N/A</td>
<td>70,76</td>
<td>90 (87–97)</td>
</tr>
<tr>
<td>SL</td>
<td>114</td>
<td>114</td>
<td>100</td>
<td>86,88</td>
<td>99 (95–106)</td>
</tr>
<tr>
<td>Dasyypogonaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>100</td>
<td>118</td>
<td>N/A</td>
<td>38,42</td>
<td>39 (38–42)</td>
</tr>
<tr>
<td>SL</td>
<td>119</td>
<td>118</td>
<td>115</td>
<td>96,103</td>
<td>102 (98–109)</td>
</tr>
<tr>
<td>Dioscoreales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>123</td>
<td>123</td>
<td>115</td>
<td>83,92</td>
<td>115 (110–123)</td>
</tr>
<tr>
<td>SL</td>
<td>124</td>
<td>124</td>
<td>120</td>
<td>105,118</td>
<td>119 (115–129)</td>
</tr>
<tr>
<td>Liliales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>117</td>
<td>116</td>
<td>114</td>
<td>86,114</td>
<td>121 (117–131)</td>
</tr>
<tr>
<td>SL</td>
<td>124</td>
<td>124</td>
<td>120</td>
<td>105,118</td>
<td>116 (111–129)</td>
</tr>
<tr>
<td>Pandanales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>114</td>
<td>109</td>
<td>102</td>
<td>72,82</td>
<td>91 (89–98)</td>
</tr>
<tr>
<td>SL</td>
<td>124</td>
<td>124</td>
<td>120</td>
<td>105,118</td>
<td>119 (115–129)</td>
</tr>
<tr>
<td>Petrosaviales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>123</td>
<td>N/A</td>
<td>N/A</td>
<td>89,99</td>
<td>60 (57–64)</td>
</tr>
<tr>
<td>SL</td>
<td>126</td>
<td>124</td>
<td>124</td>
<td>109,124</td>
<td>123 (119–133)</td>
</tr>
<tr>
<td>Poales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>113</td>
<td>112</td>
<td>99</td>
<td>85,93</td>
<td>113 (109–122)</td>
</tr>
<tr>
<td>SL</td>
<td>117</td>
<td>116</td>
<td>111</td>
<td>96,103</td>
<td>117 (113–126)</td>
</tr>
<tr>
<td>Zingiberales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>88</td>
<td>78</td>
<td>80</td>
<td>84,84</td>
<td>56 (54–60)</td>
</tr>
<tr>
<td>SL</td>
<td>114</td>
<td>114</td>
<td>100</td>
<td>86,88</td>
<td>99 (95–106)</td>
</tr>
</tbody>
</table>

SL, stem lineage; CG, crown group. An asterisk (*) indicates placement at the root and a fixed date for that node. N/A indicates the date for that node was not reported or was not estimated because of taxonomic sampling. Italics in multidivtime indicates mean dates that fall outside the confidence intervals for the r8s analysis; carets (^) indicate the r8s and multidivtime confidence intervals do not overlap.
mitochondrial) and high-copy nuclear ribosomal (nrDNA) loci (Janssen & Bremer, 2004; Anderson & Janssen, 2009; Magallón & Castillo, 2009). Low-copy nuclear genes provide unlinked loci with which to evaluate separately phylogenetic hypotheses derived primarily from unparentally inherited and linked plastid markers, which may have alternative evolutionary histories. Moreover, the combination of low-copy nuclear loci with plastid, mitochondrial and high-copy nuclear loci provides a robust dataset with which both to evaluate phylogenetic relationships and to estimate divergence times (Parfrey et al., 2011).

Low-copy nuclear phytochrome genes have been effective in resolving phylogenetic relationships across angiosperms (e.g. Mathews & Sharrock, 1996; Mathews & Donoghue, 1999, 2000; Bennett & Mathews, 2006; McNeal et al., 2013). Nuclear phytochrome genes, a family of red and far/red light-sensing proteins, are well characterized in several angiosperm species and comprise a small number of genes that are evolving independently in angiosperms (Mathews, Lavin & Sharrock, 1995). Phytochrome C is a member of the gene family which diverged prior to the diversification of angiosperms and appears to occur in single copy in monocots (Mathews & Donoghue, 2000).

We sequenced and analysed a small fragment from exon I of the nuclear-encoded PHYC gene for most monocot and several outgroup families. PHYC data were combined with the multigene data set of Chase et al. (2006) to determine if adding this marker improved resolution and support of relationships among the major lineages of monocots, particularly at previously unresolved or weakly supported nodes. We also estimated divergence times by applying new, robust fossil calibrations to a resolved phylogenetic tree calculated from the multi-locus dataset representing all three plant genomes, including PHYC. Here, we present refined estimates for the age of monocots and major lineages within them. We utilize three methods to evaluate monocot diversification and interpret resulting patterns in the context of the radiation of other relevant plant and animal lineages.

MATERIAL AND METHODS

TAXON SAMPLING

Taxon sampling followed the multilocus data sets of Chase et al. (1995, 2000, 2006). These data included 124 species representing all 11 orders of monocots and Dasypogonaceae (Givnish et al., 2006); all extant monocot families circumscribed by APG III (2009) were represented except for three families in Alismatales (Ruppiaceae, Posidoniaceae and Scheuchzeriaceae). Outgroup taxa included the 17 taxa representing early-diverging angiosperm lineages (Mathews & Donoghue, 1999; Qiu et al., 1999; APG III, 2009) from the Chase datasets (e.g. Chase et al., 2006) and ten additional eudicot taxa (to improve placement of fossil calibrations). Taxon names (and substitutions), voucher information and accession numbers are provided in Supporting Information File S1. Tip labels in all trees correspond to the taxon name from Chase et al. (2006).

DNA EXTRACTION, PCR, CLONING AND SEQUENCING

In most cases the DNA used for amplification was the same as was used in previous molecular phylogenetic studies of the monocots (File S1; Chase et al., 1995, 2000, 2006). Other taxa represented the same genus or family when DNA accessions were unavailable and/or did not amplify; estimations of familial relationships using similar procedures have shown that such substitutions have not had adverse effects on phylogenetic studies at higher taxonomic levels as these families are monophyletic (Qiu et al., 1999; Soltis et al., 2000). Genomic DNA was extracted from fresh or silica-dried leaf material of replacement samples using a modified CTAB procedure (Doyle & Doyle, 1987) using 3–6x CTAB and 2 mM NaCl (Smith et al., 1991). For most specimens an approximately 1.2-kb region in exon 1 of the nuclear-encoded PHYC gene was amplified using primers c230f and c623r (Mathews & Donoghue, 1999, 2000), and some PCR products produced clean sequences without cloning. For taxa that did not amplify using this protocol, additional primers were designed manually based on the original primers but made less degenerate for specific monocot orders (File S2). Amplification with the newly designed primers used the Qiagen Taq DNA polymerase system in the following 50-μL reaction mixture: template DNA ~100 ng, 2 μL each primer at 10 μM, 5 μL 10× Qiagen PCR Buffer (with 15 mM MgCl$_2$), an additional 2 μL 25 mM MgCl$_2$, 4 μL 2.5 mM each dNTP and 0.4 μL Qiagen Taq (5 U μL$^{-1}$). PCR reactions utilized the following conditions: an initial denaturing step of 94 °C for 5 min, 40 cycles at 94 °C for 1 min, 55 °C for 1 min and 72 °C for 90 s, and a final extension step of 72 °C for 20 min. All PCR products were visualized on a 1.5% agarose gel, and 1.2-kb bands were excised and purified, ligated into plasmid and cloned using the TOPO TA Cloning Kit (Invitrogen). We screened at least ten positive (white) colonies using PCR and M13F and M13R primers. The resulting products were purified prior to sequencing, and we obtained at least six complete cloned sequences per taxon.

PHYLOGENETIC ANALYSIS OF PHYC

Trace files for all sequences were assembled into contigs using SeqMan Pro version 7.1.0 (DNASTAR).
Vector ends were identified and trimmed manually. The identity of edited PHYC sequences was verified by the presence of easily recognized amino acid sequence hallmarks and in phylogenetic analyses with data from the other PHY loci. We performed preliminary analyses of all PHYC clones from taxa in each monocot order. Nucleotide sequence alignments within orders were unambiguous and did not contain large insertions/deletions (gaps), and PHYC clones from the same taxon clustered together (data not shown).

The final dataset included one randomly chosen PHYC clone per taxon. Sequences were translated to amino acids using Mesquite (Maddison & Maddison, 2011) and aligned in MUSCLE (Edgar, 2004a, b); the resulting alignment was used to manually place gaps in the nucleotide matrix. The beginning and end of the matrix were trimmed to minimize missing data; uninformative or ambiguous gaps were excluded from subsequent analysis. Trees that maximized the likelihood of the data (ML trees) with Amborella trichopoda Baill. as the outgroup were inferred under the GTR+I+G model of molecular evolution using RAxML v7.2.8 (Stamatakis, Hoover & Rougemont, 2008), which includes ten slow ML tree searches. See section below on ‘Phylogenetic analysis of concatenated data’ for best-fit model testing. Support for nodes was evaluated using 1000 rapid bootstrap replicates using the ‘f a’ option in RAxML. Bayesian phylogenetic trees (BI trees) were inferred in MrBayes v3.2.2 (Ronquist et al., 2012) using the GTR+I+G model of evolution; model selection is described below. We implemented default chain and heating parameters (two runs of four chains each); 30 million generations were sampled every 1000 generations with 20% discarded as burn-in. We used two diagnostic methods to evaluate convergence within and between runs, explained here only briefly. First, convergence of molecular evolutionary parameters was examined using Tracer v1.5 (Rambaut & Drummond, 2009); we required ESS (effective sample size) of > 200 for the two combined runs and examined overlapping marginal densities for the two runs. Second, convergence of topologies and posterior probabilities was examined using the program AWTY (Nylander et al., 2008) by comparing patterns of splits between posterior probabilities for both runs. The final tree was visualized with FigTree v1.4 (Rambaut, 2012) and a custom R script implementing R packages ape v3-11 (Paradis, Claude & Strimmer, 2004) and phytools v0.3-72 (Revell, 2011).

PHYLOGENETIC ANALYSIS OF CONCATENATED DATA

The PHYC data set described above was combined for analysis with the previous seven-gene data set of Chase et al. (2006), which includes data from four plastid loci (atpB, matK, ndhF, rbcL), one mitochondrial locus (atpA) and two nuclear ribosomal loci (18S and 26S). We added sequences made available on GenBank since the formation of this seven-gene alignment to fill as much missing data as possible (Table 1) compared with previous analyses (Chase et al., 2006). We excluded all characters that were excluded from the final analyses in Chase et al. (2006). We used PartitionFinder (Lanfear et al., 2012) to partition our data. Given an alignment of pre-defined data blocks (in this case, the eight-gene dataset), this program selects both the best-fitting partition scheme and models of molecular evolution for each partition. The combined eight-gene dataset was separated by PartitionFinder into three partitions (1, atpA and 18S/26S; 2, all four plastid DNA genes; 3, PHYC), thus reducing model complexity compared with partitioning by gene.

ML analysis of the combined dataset was conducted as described for the PHYC dataset except GTR+I+G was applied to each of the three partitions described above. In addition to this unconstrained analysis, we performed the same ML reconstruction with outgroup topology constrained to the current best estimate of relationships (Moore et al., 2007; Soltis & Soltis, 2013) to improve placement of fossil taxa for divergence time analyses (see below). BI analysis for the combined eight-gene dataset also followed the same parameters described for PHYC, except partitioned as determined by PartitionFinder (1, SYM+I+G; 2, GTR+I+G; 3, GTR+I+G). The combined BI analysis continued for 20 million generations with 20% discarded as burn-in.

DIVERGENCE TIMES AND DIVERSIFICATION

Fossils were selected from within monocots and the outgroup taxa to constrain divergence time estimates, following the recommendations of Gandolfo, Nixon & Crepet (2008) and Parham et al. (2011). The fossil record in monocots (excluding commelinids) was thoroughly discussed by Smith (2013). Crown group (CG) refers to the clade originating at the most recent common ancestor (MRCA) of all extant members of a group, whereas stem lineage (SL) includes both extant and extinct members of a group. Stratigraphic positions of fossils for constraints were transformed to minimum ages using the younger bound of the interval based on the current stratigraphic timescale (Gradstein, Ogg & Schmitz, 2012). Justification for fossils selected for inclusion is provided below and in File S3.

Calibration 1

Two fossils (Monetianthus mirus E.M.Friis et al., Carpentella lacunata) constrained the MRCA of Nym-
phaeales and Illiciales; the placement of this calibration reflects characteristics shared by both lineages. Monetianthus mirus, a probably bisexual flower (Friis, Pedersen & Crane, 2001; Friis et al., 2009), was originally published as possessing affinities to Nymphaeales (Friis et al., 2001). Later coding of characters for this fossil for phylogenetic analysis confirmed this placement (Friis et al., 2009). Crepet et al. (2004) raised doubts about the inclusion of M. mirus in Nymphaeales due to incomplete preservation of the fossil and absence of definitive synapomorphies of Nymphaeaceae. Supporting this fact are the results of a phylogenetic analysis in which M. mirus was analysed in combination with another fossil assigned to Nymphaeales, Microvictoria svitkoana, and all extant taxa of Nymphaeaceae (Gandolfo, Nixon & Crepet, 2004). This analysis suggested M. mirus could alternatively belong to Illiciales. The other fossil, C. lacunata (von Balthazar et al., 2008), also possessed an apparently bisexual flower and was analysed using a previously published matrix (Saarela et al., 2007). The lack of resolution in the resulting strict consensus tree left the position of the fossil unresolved, although it shared characters with both Nymphaeaceae and Illiciaceae.

Calibration 2

‘Unequivocal’ similarity to the extant genus Illicium L. placed Illiciospermum pusillum Frumin & E.M.Friis (Frumin & Friis, 1999) at the SL of Schisandraceae.

Calibration 3

Dispersed pollen of Clavatipollenites minutus (Brenner & Bickoff, 1992) possesses similarities in morphology, sculpture, and ultrastructure of the wall to pollen produced by modern Ascarina Forst. (Chloranthaceae, Walker & Walker, 1984). Several pollen grains show wall structure and other morphologies which make relationships with extant species of the genus uncertain. Given the difficulty in circumscription, uncertain systematic placement and taxonomic sampling of the family, C. minutus represents the SL of Chloranthaceae.

Calibration 4

Endressinia brasiliana (Mohr & Bernardes-de-Oliveira, 2004) was placed at the SL of Magnoliaceae based on morphological similarities to extant Magnoliaceae. No affinities for E. brasiliana at the family level were established, and it is possible this taxon represents an extinct family.

Calibration 5

Lactoripollenites africanus (Zavada & Benson, 1987) is placed at the SL of Lactoridaceae; pollen characters supporting this relationship include shape, size and ultrastructure characters of the pollen wall.

Calibration 6

Phylogenetic analysis of pollen characters (Doyle & Endress, 2010) placed Spanomera mauldinensis and Spanomera marylandensis (Drinnan et al., 1991) with Buxaceae. We place this constraint at the CG of eudicots because of limited sampling in this portion of the outgroup.

Calibration 7

Two fossils constrain the SL of Araceae: Cobbania corrugata (Lesquereux, 1876; Stockey, Rothwell & Johnson, 2007) because of overall morphology of the fossil plants, and Cobbiancarpites amurenensis (Krassilov & Kodrul, 2009) because of fruit morphology and features of the seed coat.

Calibration 8

Mabelia and Nuhliantha (Gandolfo, Nixon & Crepet, 2002) are placed to constrain the CG of Pandanales because of general morphological and anatomical features of preserved flowers as well as pollen in situ. Although there is some debate as to the placement of these fossils (Friis, Pedersen & Crane, 2006), phylogenetic analysis nested the taxa in tribe Triurideae (Gandolfo et al., 2002).

Calibration 9

Sabalites magothiensis and Palmaxylon cliffwoodensis (Berry, 1905, 1911, 1916; Daghlian, 1981) constrained the SL of Arecaceae (Arecales) because of the general venation pattern in preserved leaves (calibration 9). Although we do include a species from the sister group of the rest of the palms, Calamoideae (Amsussen et al., 2006), sparse taxonomic sampling in this diverse order resulted in our conservative placement of the calibrations at the SL of Arecales.

Calibration 10

Tricostatocarp silvapinedae and Striotornata saantanensis (Rodriguez-de la Rosa & Cevallos-Ferriz, 1994) constrained the SL of Zingiberales based on general external morphology, sculpture and anatomical details. These fossils are associated with an absolute age used for dating the constraint, although Spirematospermum chandlerae (Friis, 1988) occurred in the same time period and was used for previous fossil-based divergence time analysis (Bremer, 2000).

Calibration 11

The morphology of phytoliths of Poaceae (Prasad et al., 2005) constrains the SL of Poaceae.

We inferred divergence times using a semiparametric method implemented in r8s v1.70 (Sanderson,
2003) using PL (Sanderson, 2002), the TN algorithm with bound constraints, three initial starts, fossil-based cross validation (Near & Sanderson, 2004) and the combined eight-gene constrained ML tree. The root node representing the CG of angiosperms was fixed at 160 Ma. A test for the application of a molecular clock failed, validating the use of relaxed molecular clock approaches. An optimal smoothing parameter of 3200 was selected by testing values from log $\lambda_{10} = 0–3.5$ at intervals of 0.5. We obtained confidence intervals for the PL analysis by performing the same calculations with the early (140 Ma) and late (180 Ma) bounds of the current angiosperm age estimates. See Bell et al. (2010) and Magallón (2009) for a complete discussion of current dating of CG angiosperms.

We also estimated divergence times using the 9/25/03 distribution of multidivetime (Thorne & Kishino, 2002), following recommendations of Rutschmann (2005). multidivetime is a Bayesian relaxed clock dating method which uses the paml package (Yang, 2007) to apply substitution models to multiple data partitions and infer a posterior distribution of evolutionary times and rates. We estimated molecular evolution parameters under F84+G, which is the most complex model implemented in multidivtime. We applied the same fossil calibrations described above as hard bounds, including the root node constrained to 160 Ma or younger. Time units for setting priors were in hundreds of millions of years; for example, the mean prior distribution of the root node (rttm) was set to 1.6. The prior distributions for the rate of molecular evolution at the ingroup root node (rtrate) and autocorrelation parameter (brownmean) were estimated from the branch length estimates as recommended by multidivtime documentation and set at 0.05 and 0.7, respectively. Standard deviations for each parameter (rttmsd, rtratesd, brownsd) were set equal to the mean, which is standard practice. We first ran the program under the prior to check that distributions for nodes of interest were sufficiently wide, as recommended by the program documentation. We executed two independent runs with the identical parameters, sampling every 100 cycles, discarding the first 100 000 as burn-in and collecting the following 10 000 samples.

For diversification analyses, we gathered species diversity data from across monocots and tested modifications to the tree to accommodate incomplete sampling. Our analysis samples exemplars from major monocot lineages; each sampled taxon represents from few to many thousands of species. To accommodate this sparse sampling, diversification analyses excluded outgroups (eudicots and early-diverging angiosperm lineages), and monocot taxa were pruned such that only a single tip per monocot family remained. Using the specified time-calibrated tree, we excluded all outgroups and trimmed all taxa except a single exemplar per monocot family sensu APG III (2009). Species counts were obtained from the Angiosperm Phylogeny Website (APW; Stevens, 2001 onwards); if a range of total species was given, we applied the upper bound. Species counts from unsampled families in Alismatales (Ruppiaceae, Posidoniaceae and Scheuchzeriaceae) were added to the closest sampled family, Cymodoceaceae. When APG III lumped families described in APW, totals from these families were added (e.g. Thismiaceae and Burmanniaceae). Species counts by family, including the taxa removed for the family analysis, can be found in File S4.

We used multiple methods to evaluate diversification in monocots. First, we constructed lineage-through-time (LTT; Nee, Mooers & Harvey, 1992) plots in R using ape v3.11 (Paradis et al., 2004) to visualize the rate of diversification across the tree by comparing the shape of plots inferred from different divergence time estimates and both pruned and complete trees. Second, we used apTreeshape v1.4-5 (Bortolussi et al., 2005) as implemented in R to test for shifts in diversification in the family-level r8s tree. apTreeshape is a topology-based test that evaluates tree shape in the context of diversification using the Δ statistic (Moore, Chan & Donoghue, 2004). Finally, because our tree does not completely sample all monocots, we implemented MEDUSA from the R package geiger v1.99-3.1 (Harmon et al., 2008). This method incorporates both divergence times and species richness by family to fit diversification models in a likelihood framework.

RESULTS

All trees and the combined data matrix are available on TreeBase (accession number 15722); GenBank accession numbers for all included sequences can be found in File S1.

PHYC ANALYSIS

The final version of the PHYC data set used in this study included 1248 bp (371 aligned amino acids) of exon 1 from 132 taxa; 135 bp representing ambiguous or uninformative gaps were excluded from phylogenetic analysis. In the resulting matrix 81.5% of the positions were variable; 2.86% of the aligned positions included gaps. There were no well-supported differences in topology of the monocots between the ML and BI trees. Although most orders were supported, there was little support for relationships among major clades (Fig. 2). The earliest diverging clades in
Figure 2. Phylogenetic relationships of monocots inferred from low-copy nuclear gene PHYC. Tree shown is ML with branches indicating divergence inferred using RAxML. Numbers at nodes correspond to ML bootstrap percentages (1000 replicates, only values > 70 are shown) and BI posterior probabilities (only values > 90 are shown). Support percentages are only shown for the tree backbone and monocot crown groups. See TreeBase accession 15722 for complete support values.
Dioscoreales (Nartheciaceae) and Asparagales (Orchidaceae) are not included in their assigned orders, and other relationships for these families were not strongly supported.

COMBINED EIGHT-GENE DATA SET AND ANALYSES

The data set that includes the seven loci from Chase et al. (2006) and PHYC data included 151 taxa, with an aligned length of 11,459 bp, of which 61.1% were variable; 2.9% of positions were missing. The constrained ML, unconstrained ML and BI trees differed primarily in the placement of non-monocot lineages, but were otherwise similar topologically (see below regarding Liliales, Fig. 3). Following Chase et al. (2006), areas of conflict for circumscription of crown groups and relationships between major lineages (11 orders and Dasypogonaceae) are highlighted. ML bootstrap scores (BS) > 70 and BI posterior probability (PP) > 70 are reported, with BS > 90 and PP > 95 defined as ‘strongly supported’.

Analysis of the combined data set (Fig. 3) resulted in monophyly of the monocots with Acorales as sister to the remaining monocots (BS = 100, PP = 100); monophyly of this monogenic order is also strongly supported (BS = 100, PP = 100). Placement of Alismatales as the next branching lineage above Acorales is strongly supported (BS = 100, PP = 100) as is the monophyly of this order (BS = 100, PP = 100). Monophyly of Petrosaviales and their position as the next branching lineage after Alismatales are strongly supported (BS = 100, PP = 100 for both). Monophyly of Dioscoreales is strongly supported (BS = 95, PP = 99), and includes Nartheciaceae (unlike the analyses of PHYC alone). Monophyly of Pandanales is also weakly to strongly supported (BS = 97, PP = 83). Although taxonomically assigned to Liliales, Arachnitis Phil. is grouped with Pandanales in the BI analysis, albeit on a long branch. The ML tree supports the sister relationship of Dioscoreales + Pandanales (BS = 91), the position of Liliales as the next branching lineage above Dioscoreales + Pandanales, (BS = 93), and monophyly of Liliales (BS = 96). Support for the placement of Asparagales as the next branching lineage above Liliales and sister to the commelinids is only moderate (BS = 85, PP = 96); Asparagales, including Orchidaceae, are monophyletic (BS = 99, PP = 99). The commelinids are strongly supported as monophyletic (BS = 98, PP = 97), as are the five lineages that comprise the group (Acorales: BS = 100, PP = 100; Commelinales: BS = 100, PP = 100; Dioscoreales: BS = 100, PP = 100; Asparagales: BS = 100, PP = 100; Poales: BS = 100, PP = 100; Zingiberales: BS = 99, PP = 100). The sister relationship of Commelinales + Zingiberales is strongly supported (BS = 99, PP = 99), but the relative placement of the remaining commelinid clades is less clear.

MONOCOT DIVERGENCE TIMES AND DIVERSIFICATION

Divergence times for SLs and CGs of monocot clades are shown in Figure 4. Inclusion of earlier diverging taxa allowed us to date the divergence of monocots at 131 Mya (CG 136 Mya, Table 1). Our analyses indicate younger divergence times for several CGs, particularly Alismatales, Arecales, Zingiberales and Commelinales.

Results from the two multidivtime runs did not differ from each other by > 1 Myr per node, suggesting the analyses had reached convergence. Dates for SL divergence did not differ substantially between r8s and multidivtime analysis, multidivtime reported divergence times for seven monocot crown groups which differed significantly from the r8s analysis, in that the confidence intervals for the two algorithms do not overlap and the mean divergence times are > 10 Myr apart. Liliales and Poales are younger in multidivtime compared with r8s, whereas Acorales, Arecales, Dioscoreales, Dasypogonaceae, Petrosaviales and Zingiberales are older.

We examined the effects of these different age estimates on overall patterns of diversification in monocots using LTT plots. To accommodate the effects of sparse taxon sampling, we emphasized only early portions of evolution in these lineages (Blankers et al., 2013) and assume families may serve as a proxy of important morphological, biogeographical and life history diversity. LTT plots represent diversification by visualizing the estimated time before present (x axis) against log of the number of lineages (y axis, Fig. 5). The resulting line is a species accumulation curve, which visualizes tree-wide net diversification rates (rate of speciation minus rate of extinction). Overall, the monocot curves (rate of lineage accumulation) increased rapidly before slowing down and then levelling off. The intensity of the slope of the curve increased when only family-level diversity was included from the r8s analysis (Fig. 5A), and the pattern is robust to the age of the root node in r8s (Fig. 5B). The intensity of the slope of the curve also increased when only family-level diversity was included from the multidivtime analysis (Fig. 5C). Finally, tree-wide patterns of lineage accumulation were similar for both r8s and multidivtime, although the latter analysis resulted in a more gradual increase in diversity and earlier asymptote (Fig. 5D).

apTreeshape identified one branch with a significant shift in diversification rate, at the root of the commelinids (P = 0.029, Fig. 6). Two additional branches possessed marginally significant shifts in diversification: the root of Asparagales (P = 0.0979) and the common ancestor of Poales + Zingiberales + Commelinales (P = 0.0558).
Figure 3. Phylogenetic relationships of monocots inferred from the combined eight-gene dataset. Tree shown is ML inferred using RAxML. Numbers at nodes correspond to ML bootstrap percentages (1000 replicates, only values > 70 are shown) and BI posterior probabilities (only values > 90 are shown). Support percentages are only shown for the tree backbone and monocot crown groups. The hash mark on the branch leading to *Arachnitis* indicates the branch length has been shortened by half for the purposes of visualization. See TreeBase accession 15722 for complete support values.
Stepwise AIC in MEDUSA for the r8s chronogram identified ten branches that exhibited shifts in diversification relative to the background rate (Fig. 6). These shifts were associated with clades possessing both increased and decreased diversity, and were placed in seven monocot orders. The same analysis conducted on the multidivtime chronogram resulted in eight branches with shifts in diversification, all of which were associated with clades possessing decreased diversity (Fig. 6).

DISCUSSION

Our analyses that combined PHYC with the previously assessed plastid, mitochondrial and nuclear ribosomal data set increased support for some previously uncertain relationships, including the placement of Liliales and Asparagales. Dioscoreales (including Nartheciaceae) are supported as sister to Pandanales (Fig. 3). Relationships among some orders of commelinids remain ambiguous. Barrett et al. (2013) analysed all 83 plastome genes and found robust support for the same commelinid relationships reported here. However, even their deep plastome sampling was unable to reject alternative topologies, suggesting that multigene data sets including nuclear data are needed to further improve our understanding of monocot phylogeny. Overall, the improved support along the backbone provided a useful context to estimate divergence times and evaluate patterns of monocot diversification. We contend that variation in life history among monocot lineages is associated with patterns of rate heterogeneity which make divergence times particularly challenging to estimate, and resulting dating estimates should be interpreted with these limitations in mind. Regardless, significant shifts in diversification occur across the monocot tree, and may be related to close associations with other plant and animal lineages diversifying at the same time.

MONOCOT DIVERSITY AND LIFE HISTORY VARIATION COMPLICATE DIVERGENCE DATING

The c. 60 000 species classified as monocots represent substantial diversity in life history traits. Monocots have a high proportion of mycoheterotrophic (MHT) taxa relative to other angiosperm clades of similar size. MHT taxa implement a parasitic nutrition strategy in which carbon is obtained from nearby photosynthetic plants through a shared mycorrhizal network (Leake & Cameron, 2010). Monocots include at least 43 independently evolved MHT lineages placed in five orders: Asparagales, Liliales, Dioscoreales, Pandanales and Petrosaviales (Merckx & Freudenstein, 2010). MHT taxa possess unique morphological and life history traits related to their symbiosis with fungi and are divergent at the molecular level. We included representatives of four of these orders in our analysis: Arachnis (Liliales), Burmannia L. and Thsismia Griff. (Dioscoreales), Sciaphilia Blume (Pandanales) and Petrosavia Becc. (Petrosaviales). These taxa possessed moderate amounts of missing molecular data in our analysis, in part because of plastid gene loss. Moreover, they appear on long terminal branches relative to their neighbours in our analysis (Fig. 3), a phenomenon noted by Merckx et al. (2009). Despite these complications, their inclusion was essential for thorough sampling and accurate placement of the fossil constraint for the CG of Pandanales (File S2).

MHT taxa represent a case in which life history variation increases rates of nucleotide evolution among independent monocot lineages. Despite comprising mainly herbaceous species, growth habit also affects evolutionary rates in monocots. Smith & Donoghue (2008) found a shift to lower rates of molecular evolution in palms compared with the rest of monocots, probably due to a longer generation time resulting from a woody habit, which may explain short branches in Arecales for such a species-rich clade (Fig. 3). These examples of life history traits affect the ability of evolutionary models to accurately estimate divergence times. For example, evolutionary rates are autocorrelated across the entire angiosperm tree, but monocots exhibit exceptionally high rate heterogeneity (Bell et al., 2010). In the case of commelinids, Barrett et al. (2013) noted that Poales and Arecales possess ‘strikingly different internal branch lengths, representing extremes on a continuum of plastome evolutionary rates’. Moreover, Christin et al. (2013) found that divergence times estimated using correlated methods were incompatible with fossil evidence in grasses. For our study, methods which assume independent rates consistently failed to converge (data not shown), and variation between the r8s and multidivtime results highlight the level of uncertainty in each analysis (Table 1). Given difficulty in modeling independent and autocorrelated rates simultaneously, as recommended by Bell et al. (2010), resulting divergence times must be interpreted in the context of these model violations.

Our estimates of divergence times for monocot clades (Fig. 4, Table 1) indicate most orders diverged in the Cretaceous. Results from multidivtime suggest all monocot clades except Acorales diverged in the Cretaceous. Results from r8s suggest that divergence of four clades occurred later than the Cretaceous. This discordance may result from a complicating effect of life history variation (described above) on estimation of divergence times. First, r8s analysis indicated a Palaeogene divergence for Arecales, supporting a previous divergence estimate of c. 37 Mya.
However, abundant Arecales fossils in the Late Cretaceous (e.g. Futey et al., 2012) suggest an older divergence for the order, consistent with multidivtime. Second, the r8s analysis indicated Petrosaviales and Dasypogonaceae diverged later in the Palaeogene. Petrosaviales, however, include MHT taxa and Dasypogonaceae include woody growth habits. The final exception to a Cretaceous divergence for a monocot CG in the r8s analysis is Zingiberales (c. 56 Mya). The date reported by multidivtime agrees with an earlier estimate of divergence (Kress & Specht, 2006), although the reasons behind this discrepancy are not as clear cut as the other exceptions (but see below). It is possible the complicating effects of life history variation contribute to rate heterogeneity, and the model assumptions of both divergence time estimation methods have been violated at one or more points in the tree.

Significant shifts in diversification occurred across the monocot tree

Interpreting general diversification patterns in deep nodes of the phylogenetic trees is difficult, as most current methods possess a bias leading to continual increase in species richness (Ricklefs, 2007). The
pattern exhibited in monocots of a sharp initial increase of diversity followed by levelling off of lineage accumulation (Fig. 5) could be attributed to two phenomena: (1) monocots may have been historically diverse, experienced high extinction rates, leaving only a few remnant clades; or (2) monocots experienced high speciation rates throughout their evolutionary history. Evolutionary modelling suggests that such patterns can only emerge from the latter explanation (Rabosky & Lovette, 2008). The sparse monocot fossil record from the Early Cretaceous also indicates low diversity of ancestral lineages, although

Figure 5. Lineage-through-time (LTT) plots of monocots. A, total species from the r8s analysis (dashed line) compared with family-level r8s analysis (solid black line). The solid grey line is included for reference, and represents a constant diversification rate over time for the family-level analysis. B, family-level r8s analysis (solid line) with dating confidence intervals (root at 140 and 180 Mya shown as dashed and dotted lines, respectively). C, total species from multidivtime analysis (dashed line) compared with family-level multidivtime analysis (solid black line). The solid grey line is included for reference, and represents a constant diversification rate over time for the family-level analysis. D, family-level r8s analysis (solid line) compared with family-level multidivtime analysis (dashed line).
this could be related to low abundance of early monocots. However, the appearance of relatively high levels of fossil diversity around 65 Mya (e.g. Crane, Friis & Pedersen, 1995) supports a hypothesis of radiation at that time.

This general pattern of diversification probably masks more subtle effects of rate variation among lineages, however. MEDUSA analysis of the r8s chronogram (Fig. 6) confirmed changing rates in commelinids by identifying three clades in Poales and one in Zingiberales exhibiting shifting diversification rates. Magallón & Castillo (2009) reported commelinids were included among lineages with some of the highest diversification rates in angiosperms and were also the highest among monocots. However, they also noted relatively low rates of diversification in Asparagales, despite the inclusion of the largest family of angiosperms, Orchidaceae, which they attributed to

Figure 6. Diversification among monocot lineages. Chronogram is the r8s analysis trimmed to one taxon per family. Circles represent shifts in diversification; grey and white circles indicate shifts associated with species-rich and species-poor lineages, respectively. The circle marked A signifies the significant shift at the CG commelinids ($P = 0.029$) selected by a topological diversification test in ApTreeshape (Bortolussi et al., 2005). Numbers in circles indicate the order in which clades were added by stepwise AIC selection in MEDUSA (Harmon et al., 2008) from the r8s chronogram. Asterisks (*) indicate shifts in diversification from MEDUSA analysis of the multidivtime chronogram, all of which were associated with species-poor lineages.
the age of the order. Nevertheless, we recover significant shifts in diversification associated with core Asparagales and Orchidaceae in the r8s chronogram. We also identified an additional shift in rate leading to a species-rich clade in Pandanales (Cyclanthaceae + Pandanaeaceae), compared with two relatively species-poor families (Stemonaceae and Triuridaceae). Shifts in diversification reside in three additional monocot orders and are associated with species-poor lineages, including monogeniceneric Petermanniaceae (Liliales) and Acoraceae (Acorales). The decrease in diversification in Acoraceae is probably related to the proximity to the species-rich Araceae clade; another shift in diversification also occurs after its divergence from the rest of Alismatales. MEDUSA analysis of the multidivtime chronogram identified fewer nodes associated with shifts in diversification, two of which were identical to the r8s analysis. We prefer the interpretation of diversification as revealed by the MEDUSA analysis of r8s dates for two reasons. First, it is highly unlikely that for such a diverse clade and such a long timeframe that shifts in diversification only occurred in conjunction with species-poor clades. Second, the apTreeshape analysis found only one significant shift in rate, associated with the commelinids. The MEDUSA analysis of multidivtime failed to identify any shifts in the commelinids, whereas the corresponding analysis of r8s dates identified a shift in Poales.

Monocots diversified in the context of other organismal radiations

Most monocot stem lineages diverged in the mid-Cretaceous, c. 100 Mya. Our evidence also suggests monocot diversification and radiation accelerated after the diversification of other major lineages of plants and some animals. Angiosperm-dominated forests composed primarily of rosids (Wang et al., 2009) arose in the Late Cretaceous and created an understorey suitable for diversification of the heterosporous ferns and the polypodiaceous families (Schneider et al., 2004; Taylor, Taylor & Krings, 2009). Fern diversification has been attributed to the radiation of angiosperm-dominated forests and subsequent creation of ‘new ecospaces into which certain lineages could diversify’ (Schneider et al., 2004). The overall timing of diversification in monocots closely parallels that of ferns, and may result in part from possession of a similarly herbaceous habit.

Ecospaces were appearing as the composition of forests changed but, more importantly, newly emerged diversity in animal lineages important for plant pollination and dispersal were now available. Animal lineages experiencing rapid diversification at this time include placental mammals (Bininda-Emonds et al., 2007), amphibians (Roelants et al., 2007), weevils (McKenna et al., 2009) and ants (Moreau et al., 2006). In fact, specialized pollination modes (including Hymenoptera) are found in 75% of early-diverging monocot families without wind pollination, and specialized pollination increased during the Late Cretaceous to early Palaeogene (Hu et al., 2008). Even more important than the presence of specialized pollinators in the Late Cretaceous was the availability of new seed dispersal mechanisms providing for local adaptation and selection (Crane et al., 1995). A comparison between 77 angiosperm ant-dispersed/non-ant-dispersed sister pairs, including 12 monocot pairs, found that ant-dispersed taxa have diversified more than their sister clades (Lengyel et al., 2009). The presence of fleshy fruits in eight monocot orders (Givnish et al., 2005) suggests shifts in diversification or relatively young divergence times may have been related to concomitant radiation in animal lineages, perhaps in conjunction with dispersal syndromes.

Conclusion

The fossil record, molecular phylogenetics, extant species diversity and divergence times inferred from evolutionary rates provide a framework to explain historical and contemporary patterns of diversity in monocots. We note several instances of shifting diversification rates in monocots and place these events in the context of the diversification of other organisms. In particular, radiation of ants and other animal lineages relevant to plant pollination and dispersal allowed for rapid diversification in a few key orders. The extraordinary diversity of monocot lineages makes estimation of evolutionary origins particularly challenging. Multiple evolutionary forces appear to have acted on different monocot lineages throughout their history. These findings provide tantalizing hypotheses for future exploration of the causes and consequences of specific episodes during plant evolution.

Acknowledgements

We thank Jill LeRoy for assistance in data collection; Susana Magallón and Ruth Stockey for advice on fossil calibrations; Mark Beilstein, Nathalie Nagalingum and Mark Clements for assistance with divergence time estimation; and an associate editor and two anonymous reviewers for comments which greatly improved the manuscript. This work was supported by National Science Foundation grants to the Monocot Assembling the Tree of Life group (DEB 0829849), K.L.H. as a scholar at the National Evolutionary Synthesis Center (NESCent, EF-0905606), to
REFERENCES

Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chunley TW, Boore JD, Jansen RK, dePamphilis CW. 2005. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way...

Rambaut A. 2012. FigTree v1.4. Available at: http://tree.bio.ed.ac.uk/software/figtree.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

File S1. Taxon and voucher information. Family assignations follow APGIII. An asterisk (*) indicates a mycoheterotrophic taxon. A carat (¨) indicates a GenBank accession submitted for this study. Voucher information for non-PHYC taxa is available through the GenBank accession. Names in parentheses represent taxon substitutions for that locus. KewDNA refers to Kew DNA Bank accession number (http://apps.kew.org/dnabank). Non-monocot lineages include order in the first column.

File S2. PHY C primers designed to amplify monocot orders.

File S3. Fossils used for calibration of divergence times. Node label refers to text in the Methods. Constrained nodes indicate the lineage for which each minimum date is assigned (SL, stem lineage; CG, crown group). Published ages of fossils were transformed to absolute ages when necessary using the younger bound of the interval based on the current stratigraphic timescale (Gradstein et al., 2012).

File S4. Monocot taxonomy and species counts used for diversification analyses.

Linnean Society. Botanical Journal

<table>
<thead>
<tr>
<th>Title Details</th>
<th>Table of Contents</th>
</tr>
</thead>
</table>

Related Titles
- Alternative Media Edition (2)

Lists
- Marked Titles (0)
- BBA102 (4)

Search History
- 1545-7885 (1)
- 1442-9985 (1)
- 1664-302X (1)
- 0179-1613 (1)
- 1059-910X (1)
- 0024-4074 (1)

Basic Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Linnean Society. Botanical Journal</td>
</tr>
<tr>
<td>ISSN</td>
<td>0024-4074</td>
</tr>
<tr>
<td>Publisher</td>
<td>Wiley-Blackwell Publishing Ltd.</td>
</tr>
<tr>
<td>Country</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Status</td>
<td>Active</td>
</tr>
<tr>
<td>Start Year</td>
<td>1855</td>
</tr>
<tr>
<td>Frequency</td>
<td>Monthly</td>
</tr>
<tr>
<td>Language of Text</td>
<td>Text in: English</td>
</tr>
<tr>
<td>Refereed</td>
<td>Yes</td>
</tr>
<tr>
<td>Abstracted / Indexed</td>
<td>Yes</td>
</tr>
<tr>
<td>Serial Type</td>
<td>Journal</td>
</tr>
<tr>
<td>Content Type</td>
<td>Academic / Scholarly</td>
</tr>
<tr>
<td>Format</td>
<td>Print</td>
</tr>
</tbody>
</table>

Description
Publishes original papers on systematic and evolutionary botany and comparative studies of both living and fossil plants.

Subject Classifications

Additional Title Details

Title History Details

Publisher & Ordering Details

Price Data

Online Availability

Abstracting & Indexing

Other Availability

Demographics

Reviews