Addressing a single spin in diamond with a macroscopic dielectric microwave cavity

Citation: Applied Physics Letters 105, 133101 (2014); doi: 10.1063/1.4896858
View online: http://dx.doi.org/10.1063/1.4896858
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/105/13?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity

Focused-ion-beam overlay-patternning of three-dimensional diamond structures for advanced single-photon properties

Creation of quantum entanglement with two separate diamond nitrogen vacancy centers coupled to a photonic molecule

Increasing the creation yield of shallow single defects in diamond by surface plasma treatment

Tracking emission rate dynamics of nitrogen vacancy centers in nanodiamonds
Appl. Phys. Lett. 102, 253109 (2013); 10.1063/1.4812711
Addressing a single spin in diamond with a macroscopic dielectric microwave cavity

J.-M. Le Floch,1 C. Bradac,2 N. Nand,2 S. Castelletto,3 M. E. Tobar,1 and T. Volz2

1ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The University of Western Australia, Crawley, Western Australia 6009, Australia
2ARC Centre of Excellence for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales 2109, Australia
3School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Australia

(Received 19 August 2014; accepted 19 September 2014; published online 29 September 2014)

We present a technique for addressing single nitrogen-vacancy (NV) center spins in diamond over macroscopic distances using a tunable dielectric microwave cavity. We demonstrate optically detected magnetic resonance (ODMR) for a single negatively charged NV center (NV–) in a nanodiamond (ND) located directly under the macroscopic microwave cavity. By moving the cavity relative to the ND, we record the ODMR signal as a function of position, mapping out the distribution of the cavity magnetic field along one axis. In addition, we argue that our system could be used to determine the orientation of the NV– major axis in a straightforward manner. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896858]

Over the past decade, nitrogen-vacancy (NV) color centers in diamond (Figure 1(a)) have attracted a great deal of interest due to their outstanding quantum properties.1 Experiments have demonstrated long ground-state spin coherence times of the negatively charged NV center (NV–) even at room temperature.2 This makes NV– centers in diamond ideal candidates for room-temperature qubits,3–4 and for ultrasensitive quantum sensors for detecting magnetic5–11 and electric fields12 at the nanoscale even in biological settings.9,13,14

Both quantum information processing and quantum sensing with NV– spins require the (coherent) manipulation and addressing of individual spins typically through the application of microwave (MW) radiation at a frequency that is resonant with the ground-state spin transition. The NV– exhibits a zero-field spin resonance at 2.87 GHz, which occurs between the mS = 0 and mS = ±1 spin sublevels of its spin triplet ground state (see Figure 1(b)). The most commonly used approaches for applying microwaves at this frequency are on-chip microstrip lines (thin wires), coplanar waveguides, or free-space loop antennas. On-chip solutions rely on near-field coupling and require the NV– spin to be in close proximity (on the order of 10 μm) to the wire or microstrip line. Besides the inhomogeneity of the field, these on-chip solutions can easily lead to significant sample heating and undesired sample drift. Loop antennas typically work in the far field but require orders of magnitude larger amount of radiated MW power.

In order to address single NV– spins in diamond, we designed a so-called dielectric-loaded microwave resonator (DLR) with high quality (Q) factor (see Figure 1(c)). DLRs of this kind are typically used in low-temperature electron paramagnetic resonance experiments for measuring the complex permittivity of extremely low-loss dielectrics,15–17 but are also employed for testing local Lorentz invariance in fundamental experiments.18 In industrial settings, DLRs find applications in radar, proximity detection, information transmission, remote guiding, navigation, and positioning.19,20 In order to find an appropriate design for our DLR, we employed the numerical method of lines21 or finite element analysis. The design was guided by the desire to have compact cavity dimensions and the requirement for the field to couple evanescently to the NV– spins located in close vicinity under the cavity.

We found the best configuration to be an open cylindrical symmetric cavity with a pure transverse electric (TE) mode with two non-vanishing magnetic-field components, Hx and Hy. In contrast to whispering gallery modes, the TE-field confinement into the dielectric is not as high and exhibits less spurious modes, leading to a higher Q-factor.22 We denote the different cavity modes by TE m,n,p, where 2m is the number of azimuthal nodes, n is the number of radial nodes, and p is the number of nodes along the z-axis (symmetry axis) of the cylinder. For pure TE-modes, the

FIG. 1. (a) Diamond lattice structure with an embedded NV center. (b) Level scheme for the NV– center including the hyperfine splitting of the triplet ground state (|3A). Optical pumping of the spin into the mS = 0 state occurs via an intersystem crossing to the singlet manifold. (c) Dielectric cavity with adjustable plunger. The outer diameter of the cavity is 32 mm, its height amounts to 20 mm. (d) Transmission spectrum of the cavity with a Full-Width Half-Maximum (FWHM) of 3.5 MHz corresponding to a Q-factor of around 1000. The spectrum was recorded using a Fieldfox N9918A (Agilent Technologies). (e) Numerically calculated cavity frequency as a function of plunger position. The mode of interest TE0,1,1 tunes easily across the NV– ground-state spin transition.
azimuthal mode number vanishes, i.e., \(m = 0 \). Due to the particular boundary conditions, they only have three non-vanishing components of the electromagnetic field, \(E_\theta \), \(H_r \), and \(H_z \). By inserting a dielectric rod made of high-permittivity, low-loss microwave material, the field can be confined to an area of roughly \(10 \times 10 \text{mm}^2 \). From the few suitable materials available, we chose \(\text{TiO}_2 \) for which the fundamental mode has a frequency of 2.2 GHz. For addressing the NV– spin transition, we then use the higher-order TE\(_{0,1,3}\)-mode resonating at 2.7 GHz. Frequency tuning is achieved by mechanical insertion of a metallic plunger, which directly affects the electric field and shifts the resonance frequency up to a value of 3.1 GHz (Figure 1(e)).

The magnetic field of the DLR cavity has cylindrical symmetry. Both the radial magnetic field strength, \(H_r \), and the vertical magnetic field strength, \(H_z \), are displayed in Figure 2. Figures 2(a) and 2(b) show two-dimensional plots of the respective field strength in a plane that contains the symmetry axis of the cavity: The x-axis corresponds to the radial distance from the symmetry axis and the values on the y-axis indicate the height above the bottom edge of the cavity. We note that the radial field component \(H_r \) has a maximum right at the bottom edge at \(r \approx 7 \text{ mm} \), indicating a strong evanescent component. The vertical field \(H_z \) is well-contained within the cavity. Figures 2(c) and 2(d) show the expected variation of the radial and vertical field in a plane \(1 \text{ mm} \) below the cavity. The plots are normalized to the local overall field strength \(\sqrt{H_r^2 + H_z^2} \). The graphs clearly show that in the center of the cavity the \(H_z \) component dominates (due to symmetry) whereas right under the dielectric at \(r \approx 7 \text{ mm} \), the radial field is the dominant component.

We now move on to demonstrate optically detected magnetic resonance (ODMR) of a single NV– spin located just below the cavity. The HPHT nanodiamonds (NDs) (MSY 0.1 \(\mu \text{m} \), Microdiamant) are placed on a glass coverslip approximately \(1 \text{ mm} \) below the cavity which is mounted on a x-y-z mechanical stage (see Figure 3(a)). The ND fluorescence upon excitation with a \(532 \text{ nm} \) laser is collected using a home-built confocal microscope\(^{24} \) and sent to either a spectrometer or to avalanche photodetectors. Once a suitable single NV– center is identified, we obtain an ODMR signal by applying microwave radiation through our microwave cavity and recording the corresponding fluorescence as a function of microwave frequency. The microwave signal is generated using a standard microwave generator (SMIQ 06B, Rohde & Schwarz) and amplified (25S1G4A, Amplifier Research) before applying it to the cavity. A typical ODMR signal is displayed in Figure 3(b), clearly demonstrating the coupling of a single NV– spin to the macroscopic microwave resonator. Note that the contrast of the ODMR signal was optimized by adjusting the cavity resonance frequency to the actual transition frequency of the selected NV– center. Depending on the ND, we found a maximum achievable contrast of up to 12%. Next, we recorded a saturation curve for the \(m_s = 0 \rightarrow m_r = \pm 1 \) transition giving a saturation power of about 5 dBm for this particular NV– spin.

In order to demonstrate the spatial variation of the magnetic field, we recorded an ODMR signal as a function of relative position between the ND and the center axis of the cavity by mechanically adjusting the cavity position. In the low-power (or linear) regime, the contrast of the ODMR signal measures the local microwave power seen by the NV– spin.

![Figure 2](image1.png)

FIG. 2. (a) Radial magnetic field strength \(H_r \) in a two-dimensional cut along the vertical symmetry axis (y-axis of the graph) of the microwave cavity. (b) Analogous plot for the strength of the vertical magnetic field \(H_z \). Shaded areas indicate the dielectric material of the cavity. (c) and (d) Field intensities \(H_r \) and \(H_z \) along the radial direction in a plane \(1 \text{ mm} \) below the cavity. Both fields are normalized to the local overall field strength \(\sqrt{H_r^2 + H_z^2} \). In the center of the trap, only \(H_z \) is non-vanishing whereas directly under the dielectric (shaded region) \(H_z \) is the dominant field component.

![Figure 3](image2.png)

FIG. 3. (a) Experimental setup for measuring ODMR with the dielectric MW cavity. The ND fluorescence is collected from below using a confocal setup. The collected photons are sent to either a spectrometer or to avalanche photodetectors. (b) Single-spin ODMR signal for a ND in the dielectric MW cavity. (c) Saturation curve for the ODMR contrast as a function of microwave power (produced by the signal generator). The inset shows an autocorrelation signal with clear antibunching demonstrating that the ND contains a single NV– center.
spin. Figure 4 shows the result of such a measurement taken along the x-axis in consecutive 1-mm steps, while the z-coordinate of the resonator was kept fixed with respect to the ND position. In the figure, we plot the depth of the ODMR resonance as a function of position, normalized to 1. The plot displays the expected variation in ODMR contrast and exhibits a maximum contrast of about 6% when the ND is right below the dielectric of the cavity structure at \(r \approx 7 \text{ mm} \). The finite value of \(H_z \) at \(r = 0 \) indicates that the NV\(^-\) spin has a non-vanishing in-plane component. Since we do not know the major axis of the NV\(^-\) center, we cannot extract the magnetic-field sensors. In addition, the DLR cavity can serve as a tool for identifying the orientation of NV\(^-\) spins. In the future, we plan to use the device for coherent time-resolved spin manipulation.

The main advantages of our technique are the large area over which the spins can be addressed and the absence of undesired sample heating allowing for stable long-term observations. Our measurements once again demonstrate the potential of NV\(^-\) centers as robust technologically viable magnetic-field sensors. In addition, the DLR cavity can serve as a tool for identifying the orientation of NV\(^-\) spins. In the future, we plan to use the device for coherent time-resolved spin manipulation.

This work was supported by the Australian Research Council Centre of Excellence CE110001013 and a University of Western Australia (UWA) research collaboration award.

Applied Physics Letters

Basic Description
- Title: Applied Physics Letters
- ISSN: 0003-6951
- Publisher: American Institute of Physics
- Country: United States
- Status: Active
- Start Year: 1962
- Frequency: Weekly
- Language of Text: English
- Refereed: Yes
- Abstracted / Indexed: Yes
- Serial Type: Journal
- Content Type: Academic / Scholarly
- Format: Print
- Website: http://scitation.aip.org/content/aip/journal/apl
- Email: apl@aip.org

Description:
Concise, up-to-date reports of new findings in applied physics. Includes coverage of experimental and theoretical research in condensed matter, semiconductors, superconductivity, optics, solid state lasers, nonlinear optics, surfaces, thin films, materials, and device properties.

Subject Classifications

Additional Title Details

Publisher & Ordering Details

Price Data

Online Availability

Abstracting & Indexing

Other Availability

Demographics

Reviews