MATHEMATICAL PATTERNING IN EARLY CHILDHOOD: AN INTERVENTION STUDY

Marina Marie Papic, Dip. Teach, B. Ed, MA

Macquarie University
Australian Centre for Educational Studies
School of Education
Centre for Research in Mathematics and Science Education

This thesis is presented in partial fulfilment of requirements for the degree of Doctor of Philosophy

June, 2007
DEDICATION

In memory of my father, Vladimir
2.5.37 – 14.9.05
who had a passion for books,
a love of learning and
who would have been very proud of both this thesis
and my achievements.
ACKNOWLEDGEMENTS

I would like to thank those people who supported this research:

From the formative stages of this thesis, to the final draft, I owe an immense debt of gratitude to my supervisor Associate Professor Joanne Mulligan. Her time, patience, advice, expertise and careful guidance and commitment to this thesis were invaluable. Thank you Joanne, for your constant support, encouragement and friendship.

To my husband Tony, thank you for your patience, support and encouragement. You are my motivation and my inspiration!

To my son Christopher, now 16 years of age, whose own dedication, passion, hard work and achievements inspire me everyday. Thank you for supporting me!

To my mother, Eva, thank you for your support and encouragement. You are an angel and an inspiration.

To my best friend, Grace, for always supporting and encouraging me. Whose own commitment to education and learning are a source of motivation.

To Rosie and Anne, and the rest of my family and friends, who offered me unconditional love and support throughout the course of this thesis.

Associate Professor Michael Mitchelmore, for proof reading the thesis at varying stages and for his invaluable advice and expertise.

To Professor Jennifer Bowes, Institute of Early Childhood Head of School (2004-2006), Macquarie University, Sydney, for her support of this thesis and whose own dedication to research continues to inspire me.

To Associate Professor Jane Torr, Institute of Early Childhood Head of School (2007), Macquarie University, Sydney, for her support and encouragement of this thesis.

To Professor Alan Rice, Dean of the Australian Centre for Educational Studies, Macquarie University, Sydney, for his support and encouragement of this thesis.
To my colleagues at the Institute of Early Childhood, Macquarie University, Sydney, for their encouragement, kind words and friendship. To each one of you, thank you for your support.

To Dr Shirley Wyver, for proof-reading the final draft. Thank you for your time, expert advice and suggestions.

To Dr Greg Robertson, for his expert advice on the best way to analyse and report the research data.

Ann Maree and Ves Vukasin for allowing me to conduct my research in their childcare centre. Thank you to Ann Maree for the videoing, the constant support, encouragement and friendship. Without her commitment, the success of this project would not have been possible.

To the staff of Little Peters, especially Kathleen and Maria, for their open mindedness, their commitment to improving educational opportunities for children, their support of this research and the hours of planning, photographs, videoing, implementation of experiences and documentation. I am truly grateful.

To Grace Raad and the staff of Club Kindy for allowing me into their childcare centre and for their support of this research.

To Kate Highfield, for word processing and formatting, and for her constant support and encouragement.

To Sarah McNeill and Kristy Goodwin for formatting the final draft.

Finally to the children who participated in this research. Without your enthusiasm, your willingness to participate in all the experiences and your wonderful patterns there would be no study. May you continue to have a love of learning! To the memory of Kevin (aged 5 years), from Little Peters – know that you played a very special part in this research.

To each of the above, I extend my deepest appreciation.
I hereby certify that this work has not been submitted for a higher degree to any other university or institution.

Ethics Approval Reference No: HE02MAY2003–D02278
TABLE OF CONTENTS

DEDICATION ii
ACKNOWLEDGEMENTS iii
STATEMENT OF CANDIDATE v
TABLE OF CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xv
LIST OF APPENDICES xvii
SYNOPSIS xix

CHAPTER 1: INTRODUCTION 1
1.1 WHAT IS A MATHEMATICAL PATTERN? 4
 1.1.1 Repeating patterns 4
 1.1.2 Growing patterns 6
 1.1.3 Functional thinking 7
 1.1.4 Linear and non-linear patterns 8
 1.1.5 Spatial structure 9
1.2 BACKGROUND OF THE PROBLEM: THEORETICAL PERSPECTIVES 9
1.3 RESEARCH ON EARLY ALGEBRA AND PATTERNING WITH YOUNG CHILDREN 11
1.4 STATEMENT OF THE PROBLEM 13
 1.4.1 Pedagogy and curriculum 14
 1.4.2 The role of patterns and algebra in early mathematics curricula 15
1.5 RESEARCH QUESTIONS 16
1.6 PURPOSE AND AIMS 17
1.7 SIGNIFICANCE OF STUDY 17
1.8 ORGANISATION OF THE THESIS 18

CHAPTER 2: BACKGROUND TO THE RESEARCH: MATHEMATICS IN EARLY CHILDHOOD 19
2.1 THE ROLE OF PLAY IN EARLY CURRICULA 20
2.2 PLAY AND EARLY MATHEMATICAL DEVELOPMENT 21
2.3 EARLY CHILDHOOD CURRICULA 23
2.4 RESEARCH DIRECTIONS: EARLY MATHEMATICS LEARNING 27
2.5 EARLY NUMERACY AND MATHEMATICAL ACHIEVEMENT 31
2.6 INTERVENTION STUDIES 32
2.7 EARLY NUMERACY PROGRAMS 34
2.8 LIMITATIONS OF EARLY MATHEMATICS CURRICULUM 35

CHAPTER 3: REVIEW OF LITERATURE: TEACHING, LEARNING AND CURRICULA – EARLY ALGEBRA IN THE PRIMARY AND PRESCHOOL YEARS 38
3.1 RESEARCH ON THE TEACHING AND LEARNING OF EARLY ALGEBRA 38
3.2 RESEARCH ON EARLY ALGEBRA IN THE ELEMENTARY YEARS 40
3.2.1 Research on the relationship between arithmetic and algebraic thinking

3.2.2 Studies on early algebraic thinking and functional thinking

3.3 RESEARCH ON EARLY ALGEBRA AND PATTERNING IN THE EARLY YEARS

3.3.1 Patterning in intervention studies

3.3.2 Studies of patterning skills in mathematics learning

3.3 PATTERNING IN CURRENT MATHEMATICS CURRICULA

3.4 TEACHER PROFESSIONAL DEVELOPMENT: EARLY ALGEBRA PROJECTS

3.5 SUMMARY

CHAPTER 4: METHODOLOGY

4.1 INTRODUCTION: METHODOLOGICAL APPROACHES

4.2 THE PILOT STUDY

4.2.1 Purpose

4.2.2 Method

4.2.3 Pilot study: Task design

4.2.4 Procedures

4.2.5 Analysis of responses

4.2.6 Discussion of results

4.2.7 Limitations and implications

4.3 THE MAIN STUDY

4.3.1 Data collection

4.3.2 Sample

4.4 THE INTERVENTION

4.4.1 Background

4.4.2 The preschool setting

4.4.3 Description of the Intervention

4.4.4 Aims of the Intervention

4.4.5 Structured individual and small group work on pattern-eliciting task

4.4.6 'Patternising' the regular preschool program

4.4.7 Observing children's patterning in free play

4.4.8 Procedures

4.4.9 Professional development of staff

4.4.10 Role of caregivers

4.4.11 Data collection

4.4.12 Data analysis

4.5 INTERVIEW-BASED ASSESSMENT TASKS

4.5.1 The development of assessment tasks

4.5.2 Concept of patterning: Exploratory tasks

4.5.3 Repeating patterns

4.5.4 Spatial Structure patterns

4.5.5 Growing patterns

4.5.6 Assessment interview procedures

4.5.7 Analysis of assessment data

4.6 SCHEDULE FOR EARLY NUMBER ASSESSMENT (SENA 1)

4.7 SCHOOL-BASED ASSESSMENT

4.8 SUMMARY
LIST OF FIGURES

CHAPTER 1
Figure 1.1 Examples of Growing Patterns (Warren, 2005b, p.307) 6

CHAPTER 2
Figure 2.1 Geomix 24
Figure 2.2 Pattern cards 24
Figure 2.3 Wooden stringing beads 24

CHAPTER 3
Figure 3.1 Series of dots increasing in number over time. Earnest & Schliemann, 2004, p. 296. 47

CHAPTER 4
Figure 4.1 NSW Mathematics Syllabus, Early Stage 1 Patterns & Algebra Outcome, Knowledge and Skills 85
Figure 4.2 Children's replication of 'tower' model (simple AB repetition) 87
Figure 4.3 Longitudinal design of study 90
Figure 4.4 Border task (BP9.1-1) Assessment 1 and 2 103
Figure 4.5 Border task (BP9.1-1) Assessment 3 103
Figure 4.6 Border task (BP9.1-2) Assessment 3 103
Figure 4.7 Border task (BP9.2) Assessment 3 103
Figure 4.8 Hopscotch Pattern 104
Figure 4.9 Reconstructing the movement of the Hopscotch Template through four quarter turns 104
Figure 4.10 Array Patterns: Tasks AP4.1-1 and AP4.1-2 106
Figure 4.11 Block Patterns: Tasks BLP5.1-1 and BLP 5.1-2 107
Figure 4.12 Grid Patterns: Task GP6.1 107
Figure 4.13 Triangular Patterns: Tasks TDP3.1-1 and TDP3.1-2 107
Figure 4.14 Regular Dot Patterns: Task SP7.1-1 107
Figure 4.15 Grid Dot Patterns: Task SP7.1-2 108
Figure 4.16 Vertical Stair case Block Patterns: Task SP7.1-3 108
Figure 4.17 Irregular Dot Patterns: Task SP7.1-4 108
Figure 4.18 Triangular 2 Pattern: Task TDP3.1-1 109
Figure 4.19 Square Tile Pattern: Task STP5.1-1 and STP5.1-2 110

CHAPTER 5
Figure 5.1 Subitising regular dot patterns 1-6: “Fishing” game. (Level 2 Emergent) 132
Figure 5.2 Subitising regular dot patterns 1-6: “Teddy Bear Race” (Level 2 Emergent) 132
Figure 5.3 Subitising regular dot patterns 1-6: “Chute” game (Level 2 Emergent) 132
Figure 5.4 Subitising irregular dot patterns 1-6: “Bee Hive” game (Level 3 Perceptual) 133
Figure 5.5 Subitising regular dot patterns 1-10: “Bear Bingo” (Level 4 Conceptual) 134
Figure 5.6 Subitising grid dot patterns 1-10: “Dot Concentration” (Level 4 Conceptual) 134
Figure 5.7 Intervention Hopscotch task: Playing a game of hopscotch 136
Figure 5.8 Intervention Hopscotch task: Repeating the hopscotch element 136
Figure 5.9 Intervention Hopscotch task: Design own hopscotch 137
Figure 5.10 Intervention Hopscotch task: Design own hopscotch 137
Figure 5.11 Child I 17 creates pattern element 137
Figure 5.12 Intervention Hopscotch task: Design own hopscotch 138
Figure 5.13 Shape creatures, AB repetition (I 12, 5.2 years) 140
Figure 5.14 Shape creatures, ABC repetition (I 15, 4.5 years) 140
Figure 5.15 Snake experience 141
Figure 5.16 Snake experience, ABC repetition 141
Figure 5.17 Spring Flowers experience 142
Figure 5.18 Spring Flowers experience, AAB repetition 142
Figure 5.19 Rainbow fish border pattern 143
Figure 5.20 Animal masks experience, AAABBB repetition 144
Figure 5.21 Christmas ornament experience AB and ABC repetition 145
Figure 5.22 Christmas Ornament experience AB and AAB repetition 145
Figure 5.23 Christmas wrapping paper AB repetition, colour and shape 145
Figure 5.24 Observation notes: AB repetitions made with Lego® blocks 147
Figure 5.25 Printing shapes: AB repetition incorporating two variables, colour and shape 147
Figure 5.26 Printing shapes and adding regular dot patterns 147
Figure 5.27 Threading beads: ABCD repetition (I 12, 5.6 years) 148
Figure 5.28 Threading beads: ABCDEFGHI repetition (I 15, 5.4 years) 148
Figure 5.29 Connector straws: Cyclic pattern (I 1, 4.5 years and I 26, 4.4 years) 150
Figure 5.30 Spontaneous play situation: Matching dominoes according to dot patterns (I 17, 4.6 years) 150

CHAPTER 6
Figure 6.1 Task CP.1 Category 1 (I 19, 4.6 years) 158
Figure 6.2 Task CP.1 Category 1 (NI 21, 4.0 years) 158
Figure 6.3 Task CP.1 Category 1 (I 25, 4.7 years) 158
Figure 6.4 Task CP.1 Category 2 (NI 10, 5.1 years) 158
Figure 6.5 Task CP.1 Category 2 (NI 13, 4.6 years) 158
Figure 6.6 Task CP.1 Category 2 (I 18, 4.6 years) 158
Figure 6.7 Task CP.1 Category 3 (I 4, 4.8 years) 159
Figure 6.8 Task CP.1 Category 3 (I 14, 4.10 years) 159
Figure 6.9 Task CP.1 Category 4 (NI 3, 5.1 years) 160
Figure 6.10 Task CP.1 Category 4 (I 22, 4.5 years) 160
Figure 6.11 Task CP.1 Category 4 (NI 1, 4.9 years) 160
Figure 6.12 Task CP.1 Category 4 (I 23, 4.10 years) 161
Figure 6.13 Task CP.1 Category 4 (I 12, 5.1 years) 161
Figure 6.14 Task CP.1 Category 4 (NI 18, 4.4 years) 161
Figure 6.15 Task CP.1 Category 4 (I 23, 5.4 years) 163
Figure 6.16 Task CP.1 Category 4 (I 11, 5.3 years) 163
Figure 6.17 Task CP.1 Category 4 (I 25, 5.1 years) 163
Figure 6.18 Task CP.1 ABCDE repetition (I 17, 4.7 years) 164
Figure 6.19 Task CP.1 ABC repetition (I 2, 5.4 years) 164
Figure 6.20 Task CP.1 Category 4 (NI 5, 5.7 years) 164
Figure 6.21 Task CP.1 Category 5 (NI 13, 5.0 years) 165
Figure 6.22 Task CP.1 Category 4 (I 23, 6.4 years) 166
Figure 6.23 Task CP.1 Category 4 (I 19, 6.0 years) 166
Figure 6.24 Task CP.1 Category 4 (I 3, 6.4 years) 166
Figure 6.25 Task CP.1 Category 4 (NI 18, 5.10 years) 167
Figure 6.26 Task CP.1 Category 4 (NI 1, 6.3 years) 167
Figure 6.27 Task CP.1 Category 6 (NI 10, 6.1 years) 168
Figure 6.28 Task CP.1 Category 1 (NI 6, 6.3 years) 168
Figure 6.29 Comparison of responses to Task CP.1.1 for Child I 25 at Assessments 1-3 172
Figure 6.30 Comparison of responses to Task CP.1.1 for Child I 1 at Assessment 1-3 173
Comparison of responses to Task CP1.1 for Child Nl 10 at Assessments 1-3

Comparison of responses to Task CP1.1 for Child Nl 1 at Assessments 1-3

Task CP1.2 Category 1 (I 14, 4.10 years)

Task CP1.2 Category 1 (Nl 19, 4.9 years)

Task CP1.2 Category 2 (Nl 5, 5.7 years)

Task CP1.2 Category 3 (I 9, 4.9 years)

Task CP1.2 Category 4 (I 15, 5.5 years)

Task CP1.2 Category 4 (I 11, 6.3 years)

Task CP1.2 Category 5 (Nl 17, 5.8 years)

Task CP1.2 Category 1 (I 27, 4.10 years)

Task CP1.2 Category 1 (I 2, 4.10 years)

Task CP1.2 Category 1 (Nl 1, 4.9 years)

Task CP1.2 Category 2 (Nl 3, 5.1 years)

Task CP1.2 Category 2 (Nl 5, 4.2 years)

Task CP1.2 Category 2 (I 21, 4.4 years)

Task CP1.2 Category 4 (I 15, 4.11 years)

Task CP1.2 Category 4 (I 19, 5.0 years)

Task CP1.2 Category 4 (I 15, 4.01 years)

Task CP1.2 Category 4 (I 15, 4.11 years)

Task CP1.2 Category 2 (Nl 3, 5.1 years)

Task CP1.2 Category 5 (I 8, 5.10 years)

Task CP1.2 Category 5 (I 8, 5.10 years)

Comparison of responses to Task CP1.2 for Child I 15 across three assessments

Comparison of responses CP1.1 and CP1.2 (I 18, 6.0 years)

Comparison of responses CP1.1 and CP1.2 (I 9, 6.5 years)

Task CP1.2 Growing Pattern (I 12, 6.6 years)

Percentage of correct responses for Repeating patterns at three assessment points

Percentage of correct responses for Spatial structure tasks at three assessment points

Correct response to Task BP9.1-1 (I 18, 4.6 years)

Incorrect representation Task BP9.1-1 (I 26, 4.1 years)

Incorrect representation Task BP9.1-1 (I 20, 4.8 years)

Correct representation Task HP10.1-1 (I 19, 4.6 years)

Correct representation Task HP10.1-1 (I 26, 4.1 years)

Incorrect response Task HP10.1-2 (I 2, 4.10 years)

Incorrect representation Task HP10.1-2 (I 21, 4.0 years)

Incorrect representation Task HP10.1-2 (I 21, 4.0 years)

Incorrect representation Task HP10.1-2 (I 26, 4.1 years)

Incorrect response Task HP10.1-2 (I 2, 4.10 years)

Incorrect representation Task HP10.1-2 (I 21, 4.0 years)

Incorrect representation Task HP10.1-2 (I 21, 4.0 years)

Incorrect representation Task HP10.1-2 (I 26, 4.1 years)

Incorrect response Task HP10.1-2 (I 2, 4.10 years)

Incorrect representation Task HP10.1-2 (I 21, 4.0 years)

Incorrect representation Task HP10.1-2 (I 26, 4.1 years)

Incorrect response Task HP10.1-2 (I 12, 5.1 years)

Incorrect response Task HP10.2-3, (I 18, 4.6 years)

Incorrect representation Hopscotch Task HP10.2-2, (I 17, 4.1 years)

Correct response Hopscotch Task HP10.2-2, (I 17, 4.7 years)
Correct response Hopscotch Task HP10.2-3, (I 25, 4.7 years)
Correct response Hopscotch Task HP10.2-3, (I 25, 5.1 years)
Incorrect response Task HP10.3 (I 25, 4.7 years)
Incorrect response Task HP10.3 (Nl 18, 4.4 years)
Design a hopscotch task (I 19, 5.0 years)
Design a hopscotch task (I 25, 5.1 years)
Design a hopscotch task (I 18, 5.0 years)
Design a hopscotch task (Nl 11, 5.2 years)
Correct response: Task HP10.3, (I 8, 5.10 years)
Design a hopscotch task (I 23, 5.4 years)
Design a hopscotch task (I 2, 5.4 years)
Design a hopscotch task (I 23, 5.4 years)
Design a hopscotch task, (Nl 11, 5.2 years)
Correct representation: Task AP4.1-1 Array (a) (I 12, 5.7 years)
Correct representation: Task AP4.1-2 Array (a) (I 12, 5.7 years)
Incorrect representation: Task AP4.1-1 Array (c)
Assessment 2 (I 7, 5.5 years)
Incorrect representation: Task AP4.1-1 Array (b)
Assessment 2 (Nl 16, 4.11 years)
Correct representation Task GP6.1 (c) (I 26, 4.7 years)
Correct representation Task GP6.1 (a) (I 22, 4.11 years)
Correct representation Task GP6.1 (a) (I 18, 5.0 years)
Accurate representation of Triangular patterns (c) and (d)
Task TDP3.1-1 (Child I 8, 4.10 years)
Accurate representation of Triangular Patterns (c) and (d)
Task TDP3.1-2 (Child I 23, 5.4 years)
Triangular Pattern (c) (I 25, 5.1 years)
Triangular Pattern (c) (Nl 9, 4.11 years)
Incorrect response Task TDP3.1-1 (Nl 10, 6.7 years)
Correct response Task TDP3.1-1 (I 21, 5.6 years)
Correct response Task TDP3.1-1 (I 11, 6.3 years)
Incorrect response Task TDP3.1-1 (I 4, 6.2 years)
Incorrect response Task TDP3.1-1 (I 15, 6.5 years)
Square Tile Task STP5.1-1 (Nl 10, 6.7 years)
Square Tile Task STP5.1-1 (Nl 8, 6.3 years)
Square Tile Task STP5.1-1 (Nl 17, 5.8 years)
Square Tile Task STP5.1-1 (Nl 7, 6.5 years)
Square Tile Task STP5.1-1 (Nl 4, 6.7 years)
Incorrect response Task STP5.1-1 (I 11, 6.3 years)
SENA 1 Results for Intervention and Non-intervention groups
At Assessment 3
SENA 1 Number Identification by Level of Response
SENA 1 Forward Number Word Sequence by Level of Response
SENA 1 Backward Number Word Sequence by Level of Response
SENA 1 Early Arithmetic Strategies, by level of strategy
SENA 1 Level of Subitising skills
CHAPTER 8
Percentage of correct responses by category of strategy use:
Perceptual Tower Task TP2.1-1
Percentage of correct responses by category of strategy use:
Perceptual Tower Task TP2.1-2
Tower Task TP2.1-2, Assessment 1 Category 5 Partial structure 3
Figure 8.4 Percentage of correct responses by category of strategy use:
Semi-Abstract Tower Task TP2.2-2
Figure 8.5 Percentage of correct responses by category of strategy use:
Abstract Tower Task TP2.4-1
Figure 8.6 Percentage of correct responses by category of strategy use:
Abstract Tower Task TP2.4-2
Figure 8.7 Percentage indicating properties identified in responses to
Perceptual Tower Pattern task TP2.1-3
Figure 8.8 Percentage indicating properties identified in responses to Semi-
Abstract Pattern task TP2.2-1
Figure 8.9 Percentage indicating properties identified in responses to Semi-
Abstract Pattern task TP2.3-1
Figure 8.10 Extension Task - Continuing ABBCCABBCCC single variable
repetition (NI 17, 4.8 years)
Figure 8.11 Extension Task - Continuing ABBCCABBCCC single variable
Repetition (NI 12, 5.4 years)
Figure 8.12 Extension Task - Drawing ABBCCABBCCC single variable
repetition from memory (I 3, 5.4 years)
Figure 8.13 Extension Task - Drawing ABBCCABBCCC single variable
repetition from memory (I 15, 5.5 years)
Figure 8.14 Extension Task - Designing own complex single variable repetition
(I 11, 5.3 years)
Figure 8.15 Extension Task - Designing own complex single variable repetition
(I 2, 5.4 years)
LIST OF TABLES

CHAPTER 4

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Schedule of numeracy tasks: Pilot study</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>Key aspects of patterning and related task categories</td>
<td>99</td>
</tr>
<tr>
<td>4.3</td>
<td>Descriptors for task category Concept of Pattern</td>
<td>100</td>
</tr>
<tr>
<td>4.4</td>
<td>Repeating Patterns tasks</td>
<td>102</td>
</tr>
<tr>
<td>4.5</td>
<td>Number patterns presented at three assessment points</td>
<td>105</td>
</tr>
<tr>
<td>4.6</td>
<td>Descriptors for task categories identified as Spatial Structure</td>
<td>106</td>
</tr>
<tr>
<td>4.7</td>
<td>Descriptors for task categories identified as Growing Patterns</td>
<td>109</td>
</tr>
</tbody>
</table>

CHAPTER 5

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Schedule of Intervention Patterning-eliciting tasks</td>
<td>118</td>
</tr>
<tr>
<td>5.2</td>
<td>Framework of Assessment and Learning for Tower tasks.</td>
<td>120</td>
</tr>
<tr>
<td>5.3</td>
<td>Level of Tower Pattern Development</td>
<td>121</td>
</tr>
<tr>
<td>5.4</td>
<td>Tower Tasks: Progression of Individual children</td>
<td>124</td>
</tr>
<tr>
<td>5.5</td>
<td>Levels of Subitising</td>
<td>131</td>
</tr>
<tr>
<td>5.6</td>
<td>Number of children by Subitising level pre- and post-Intervention</td>
<td>134</td>
</tr>
<tr>
<td>5.7</td>
<td>Patternised shape experience</td>
<td>140</td>
</tr>
<tr>
<td>5.8</td>
<td>Patternised snake experience</td>
<td>141</td>
</tr>
<tr>
<td>5.9</td>
<td>Patternised spring flowers experience</td>
<td>141</td>
</tr>
<tr>
<td>5.10</td>
<td>Patternised Fish experience</td>
<td>142</td>
</tr>
<tr>
<td>5.11</td>
<td>Patternised animal masks experience</td>
<td>144</td>
</tr>
<tr>
<td>5.12</td>
<td>Patternised Christmas experience</td>
<td>144</td>
</tr>
</tbody>
</table>

CHAPTER 6

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Descriptors of categories for Concept of Pattern task CP1.1</td>
<td>155</td>
</tr>
<tr>
<td>6.2</td>
<td>Number of children by category of representation for Concept of Pattern task CP1.1 at first assessment</td>
<td>157</td>
</tr>
<tr>
<td>6.3</td>
<td>Number of children by category of representation for Concept of Pattern task CP1.1 at second assessment</td>
<td>162</td>
</tr>
<tr>
<td>6.4</td>
<td>Number of children by category of representation for Concept of Pattern task CP1.1 at third assessment</td>
<td>165</td>
</tr>
<tr>
<td>6.5</td>
<td>Categories of response for Intervention and Non-intervention children across three assessments for task CP1.1.</td>
<td>169</td>
</tr>
<tr>
<td>6.6</td>
<td>Progression of individual responses for Concept of Pattern task CP1.1</td>
<td>170</td>
</tr>
<tr>
<td>6.7</td>
<td>Descriptors of categories for Concept of Pattern task CP1.2</td>
<td>175</td>
</tr>
<tr>
<td>6.8</td>
<td>A comparison of changes in categories of response for Intervention and Non-intervention children across three assessments: Task CP1.2</td>
<td>178</td>
</tr>
<tr>
<td>6.9</td>
<td>Progression of individual categories of response for Concept of Pattern task CP1.2</td>
<td>182</td>
</tr>
</tbody>
</table>

CHAPTER 7

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Percentage of correct responses for Border Pattern tasks</td>
<td>192</td>
</tr>
<tr>
<td>7.2</td>
<td>Percentage of correct responses for Hopscotch Pattern tasks</td>
<td>196</td>
</tr>
<tr>
<td>7.3</td>
<td>Percentage of correct responses on Number Pattern tasks</td>
<td>205</td>
</tr>
<tr>
<td>7.4</td>
<td>Number patterns presented at three assessment points</td>
<td>205</td>
</tr>
<tr>
<td>7.5</td>
<td>Percentage of correct responses to Task NP8.1-1, for each pattern</td>
<td>205</td>
</tr>
<tr>
<td>7.6</td>
<td>Percentage of correct responses on Array Pattern tasks</td>
<td>209</td>
</tr>
<tr>
<td>7.7</td>
<td>Percentage of correct responses on Block Pattern tasks</td>
<td>211</td>
</tr>
<tr>
<td>7.8</td>
<td>Percentage of correct responses on Grid Pattern tasks</td>
<td>211</td>
</tr>
<tr>
<td>7.9</td>
<td>Percentage of correct responses on Subitising Pattern tasks</td>
<td>213</td>
</tr>
</tbody>
</table>
Table 7.10 Percentage of correct responses on Triangular 1 Pattern tasks 214
Table 7.11 Percentage of correct responses to Triangular 1 tasks, for each pattern 216
Table 7.12 Percentage of correct responses on Triangular 2 Pattern tasks 220
Table 7.13 Percentage of correct responses on Square Tile Pattern tasks 222

CHAPTER 8
Table 8.1 Categories of Tower tasks 234
Table 8.2 Percentage of correct responses to Tower tasks at three assessment points 235
Table 8.3 Classification of responses to Tower Perceptual tasks TP2.1-1 and TP2.1-2, Semi-Abstract task TP2.2-2 and Abstract tasks TP2.4-1 and TP2.4-2 238
Table 8.4 Classification of responses to Tower Perceptual task TP2.1-3 and Semi-Abstract tasks TP2.2-1 and TP2.3-1 at all assessment points 246
LIST OF APPENDICES

APPENDIX 3A The Early Years Curriculum: Order, sequence and pattern descriptors
APPENDIX 3B *Patterns, functions and algebra* strand, Pre-Kindergarten to Year 2 expectations, *The Principles and Standards for School Mathematics* (NCTM, 2000)
APPENDIX 3C Early Stage 1 and Stage 1 outcomes, *Patterns and Algebra* strand, NSW K-6 Mathematics Syllabus
APPENDIX 3D Standards for the Pattern and Algebraic Reasoning strand for grades R-2, South Australian Curriculum Standards and Accountability Framework
APPENDIX 4A Kindergarten teachers' survey
APPENDIX 4B Macquarie University Ethics Committee
APPENDIX 4C Information and Consent Form – Intervention Preschool Director/Staff
APPENDIX 4D Information and Consent Form – Non-intervention Preschool Director/Staff
APPENDIX 4E Information and Consent Form – Intervention Preschool Parents
APPENDIX 4F Information and Consent Form – Non-intervention Preschool Parents
APPENDIX 4G Information and Consent Form – School Principal
APPENDIX 4H Information and Consent Form – Kindergarten Teachers
APPENDIX 4I Information and Consent Form – Kindergarten Parents
APPENDIX 4J Completed Intervention preschool teachers’ surveys prior to Intervention
APPENDIX 4K Assessment 1 & 2 Task Schedule
APPENDIX 4L Assessment 3 Task Schedule
APPENDIX 4M Preschool assessment interview recording sheet
APPENDIX 4N Kindergarten assessment interview recording sheet
APPENDIX 4O The Schedule for Early Number Assessment SENA 1 - tasks administered
APPENDIX 4P The Learning Framework in Number
APPENDIX 5A Excerpts from Child I 10 portfolio: Responses to *Tower* Tasks
APPENDIX 5B Excerpts from Child I 22 portfolio: Responses to *Tower* tasks
APPENDIX 5C Excerpts from Child I 21 portfolio: Responses to *Tower* tasks
APPENDIX 5D Excerpts from Child I 23 portfolio: Responses to *Tower* tasks
APPENDIX 5E Example of observational records made by researcher/teacher
APPENDIX 6A Categories of response across three assessment points for Task CP1.1 – comparison between Intervention and Non-intervention children whose category of representation at the first assessment was Category 0
APPENDIX 6B Categories of response across three assessment points for Task CP1.1 – comparison between Intervention and Non-intervention children whose category of representation at the first assessment was Category 1 or 2
APPENDIX 6C Case-studies: Comparison of responses to Concept of Pattern task CP1.1 at three assessment points where all responses fell into Category 4
APPENDIX 6D Categories of response across three assessment points for Task CP1.3 – comparison between Intervention and Non-intervention children whose category of representation at the first assessment was Category 0 NR
APPENDIX 6E Categories of response across three assessment points for Task CP1.2 – comparison between Intervention and Non-intervention children whose category of representation at the first assessment was Category 1 RA or Category 5 SS
APPENDIX 7A Percentage of correct responses by task category at three assessment points
APPENDIX 7B Percentage of correct responses for individual Intervention children at each assessment point
APPENDIX 7C Percentage of correct responses for individual Non-intervention children at each assessment point
APPENDIX 7D Comparison between individual Intervention and Non-intervention children at three assessment points
APPENDIX 7E Descriptors of levels in *The Learning Framework in Number*
APPENDIX 8A Descriptor of task categories for Tower Perceptual tasks TP2.1-1 and TP2.1-2, Semi-Abstract task TP2.2-2 and Abstract tasks TP2.4-1 and TP2.4-2

APPENDIX 8B Percentage of correct responses by category of strategy use: Perceptual Tower tasks TP2.1-1 and TP2.1-2

APPENDIX 8C Percentage of correct responses by category of strategy use: Semi-Abstract Tower task TP2.2-2

APPENDIX 8D Percentage of correct responses by category of strategy use: Abstract Tower tasks TP2.4-1 and TP2.4-2

APPENDIX 8E Descriptor of task categories for Tower Perceptual Task TP2.1-3 and Semi-Abstract tasks TP2.2-1 and TP2.3-1

APPENDIX 8F Percentage indicating properties identified in responses to Perceptual Tower Pattern task TP2.1-3

APPENDIX 8G Percentage indicating properties identified in responses to Semi-Abstract task TP2.2-1

APPENDIX 8H Percentage indicating properties identified in responses to Semi-Abstract task TP2.3-1

APPENDIX 9A Teacher A evaluation: Impact of the Intervention

APPENDIX 9B Example of preschool teacher’s observation notes and follow-up patterning experiences (2004)

APPENDIX 9C Example of preschool teacher’s observation notes and follow-up patterning experiences (2004)

APPENDIX 9D Australian Newspaper Article 22 August, 2006
Patterns are widely recognised as the foundation of mathematics. However, it is not yet fully understood how patterning influences the development of representation, symbolisation, abstraction and generalisation in young children’s mathematical thinking. A central problem is that patterning has not been considered critical to the development of key mathematical concepts and processes, or early algebraic thinking.

It is believed that children in the elementary grades are not capable of mathematical generalisation until formal algebra instruction in the secondary school (Carraher, Schliemann, Brizuela, & Earnest, 2006). Recent studies provide evidence that students’ later difficulties in algebra may not be a result of developmental constraints after all, but rather, from the limited approach to teaching elementary mathematics (Carraher et al., 2006).

The study raises four key questions: What are the characteristics of mathematical patterning young children develop naturally prior-to-school? In what ways does an intervention program promoting mathematical patterning impact on the complexity of children’s patterning concepts and skills and the development of other mathematical processes such as multiplicative thinking? Is the influence of such an intervention maintained after one year of formal schooling? If so, in what ways? What is the role of patterning in the development of early algebraic thinking?

This study describes the patterning skills young children develop prior-to-formal schooling and implements an intervention that promotes the development of a broad range of patterns: *Repeating Patterns, Spatial Patterns* and *Growing Patterns*. The study is significant because it identifies how children as young as four years-of-age construct and represent simple and complex patterns using a *unit of repeat*, and how they apply this to other forms of pattern. The design allows the monitoring of 53 young children’s pre-algebra (patterning) skills from preschool to the end of the first year of formal schooling. Case-studies of two preschools (‘Intervention’ and ‘Non-intervention’) are compared in order to examine the influence of a mathematics intervention promoting children’s patterning over a 6-month period. One-to-one task-based interviews were conducted at three intervals over an 18-month period. The study was designed as an intervention employing a mixed-method approach: integrating a traditional constructivist-based teaching experiment (Hunting, Davis & Pearn, 1996) with more contemporary aspects of a design study (Dede, 2005).
The Intervention comprised three distinct components: Structured individual and small group work on pattern-eliciting tasks, ‘patternising’ the regular preschool program, and observing children’s patterning in free play. Using a Framework of Assessment and Learning, children were placed on an individual ‘learning trajectory’ and progressed through an increasingly complex series of tasks. Analysis of children’s progress focused on levels of structure and abstraction. Further, the Intervention provided on-going professional development of the importance of pattern and structure in early mathematical learning, which assisted teachers in modifying the emergent curriculum to incorporate patterning skills.

Intervention children could successfully identify, construct and abstract the element within Repeating Patterns and calculate the number of repetitions. This was the dominant strategy used by Intervention children at Assessment 2 and sustained at Assessment 3 (12 months later). Many children used their knowledge of unit of repeat to extend and represent patterns in other forms. They were also able to draw complex repetitions from memory. The development of structural thinking about simple repetition, not just the modelling of simple repetition, advantaged the Intervention children. When dealing with Spatial Structures such as arrays of dots, Intervention children could perceive the structure of the patterns. In comparison, Non-intervention children’s responses lacked any structural features. Another critical learning process observed during the Intervention was the children’s development of transformation skills; they successfully used rotation to construct Hopscotch patterns and visualised simple and complex repetitions from different orientations.

The assessment of counting and arithmetic development provided by the Schedule for Early Number Assessment (SENA 1), administered at the third assessment, showed that Intervention children’s numerical strategies were more advanced than Non-intervention children. Some were quite advanced in their arithmetic strategies, using known facts and other non-count-by-one strategies. Further analysis of SENA interview data indicated that Intervention children recognised the structure of the patterns and partitioned the patterns into parts rather than counting individual items.

Intervention children successfully symbolised, abstracted and transferred complex Repeating Patterns, and with no apparent exposure to Growing Patterns, many of these children could construct, extend, represent and justify these patterns 12 months after the Intervention. In contrast, Non-intervention children were unable to identify or extend Growing Patterns. They saw these exclusively as 'items' in simple repetitions in the same
way as the simple repetitions that they were familiar with. These findings support those found by Warren (2005a), where 9-year-olds had greater difficulty with Growing Patterns than with Repeating Patterns. It was inferred that the difficulty with Growing Patterns was not necessarily the absence, or predominance of Repeating Patterns in early mathematics curricula. Rather, the inadequate or inappropriate development of repeating patterns without a sound understanding of the unit of repeat, limited, and possibly impeded the development of Growing Patterns. Children may be able to copy and extend patterns, but they may not necessarily identify a unit of repeat.

The findings support Blanton and Kaput’s (2004) conclusion that early algebraic learning is not developmentally constrained; young children have natural powers of generalisation and an ability to express generality (Mason, 1996). This study recommends that experiences in the first year of schooling focus on identifying, justifying and transferring various patterns, and using a variety of materials. Further, the study suggests repeating patterns should include not just “recognising, copying, continuing and creating” (Board of Studies, NSW, 2002, p. 73) simple linear patterns but rather, identifying the element within repeating patterns, the number of repetitions, drawing from memory, viewing patterns from different orientations, extending a pattern in multiple directions, and transferring a pattern to a different medium. Professionals must be aware of the natural patterning experiences in children’s play and ask appropriate questions that will promote mathematical thinking. This can only be achieved through programs that integrate effective professional development that build teachers’ knowledge and expertise and provide them with the necessary conceptual structures to take ownership of their planning and teaching.