MECHANISMS OF PLATINUM-GROUP ELEMENT FRACTIONATION IN ULTRAMAFIC MELTS AND IMPLICATIONS FOR THE EXPLORATION FOR MAGMATIC NICKEL SULPHIDE DEPOSITS

Marek Locmelis

GEMOC ARC National Key Centre, Department of Earth and Planetary Sciences, Macquarie University

Sydney, Australia

This thesis is presented for fulfilment of the degree of Doctor of Philosophy. May 2010
TABLE OF CONTENTS

Table of contents ... 3

List of figures ... 11

List of tables .. 17

Abstract .. 21

Declaration .. 23

Acknowledgements .. 25

Chapter 1 - Introduction ... 27

1.1 Introduction ... 27

1.2 Aims and objectives ... 30

1.3 Organization and Overview of the Thesis 31

1.4 Industry collaborations ... 33

Chapter 2 - Komatiites, komatiitic basalts and ferro-picrites: petrogenesis and geochemistry .. 35

2.1 Komatiites, komatiitic basalts and ferro-picrites 35

2.2 Komatiite Mineralogy ... 36

2.3 Komatiite Geochemistry ... 38

2.3.1 Behaviour of PGE during fractionation 40

2.3.2 PGE contents in komatiites 41

2.4 Komatiite-hosted nickel-sulphide deposits 41

2.4.1 Sulphide saturation in komatiites 44

2.4.2 Onset of sulphide saturation in Type-1 and Type-2 deposits 45

2.5 PGE mineralisation in komatiites 45
Table of contents

Chapter 3 - Localities & sample settings .. 49

3.1 Introduction .. 49

3.2 Sampling strategy and key variables .. 49
3.2.1 Cratons and greenstone belts ... 49
3.2.2 Age .. 50
3.2.3 Magma types and petrogenetic affinity 50
3.2.3 Mineralisation style and endowment 50
3.2.5 Emplacement characteristics .. 51
3.2.6 Metamorphic grade and nature of secondary alteration 51

3.3 Samples and Localities .. 54
3.3.1 Samples .. 54
3.3.2 Eastern Goldfields Superterrane in the Yilgarn Craton 54
3.3.3 Superior Craton .. 65
3.3.4 Fennoscandian Craton ... 66

Chapter 4 – Analytical Methods ... 71

4.1 Introduction .. 71

4.2 Whole-rock analytical techniques ... 71
4.2.1 Major, minor and trace elements ... 71

4.3 In-situ analytical techniques .. 72
4.3.1 Sample preparation ... 72
4.3.2 Electron-microprobe analysis .. 72
4.3.3 Laser Ablation ICP-MS ... 73

4.4 Platinum-group element whole-rock data 74

4.5 Carius tube digestion isotope dilution ICP-MS 76
4.5.1 Isotope Dilution ICP-MS .. 77
4.5.2 Carius Tube Digestion & PGE Extraction 79
4.5.3 ICP-MS solution analysis for PGE .. 81
4.5.4 Accuracy and precision of the PGE analysis 82
Table of contents

Chapter 5 - Petrography & Mineral chemistry

- **5.1 Introduction** ... 83
- **5.2 Chromite** .. 83
 - 5.2.1 Petrography ... 83
 - 5.2.2 Chromite chemistry ... 84
- **5.3 Olivine** .. 97
 - 5.3.1 Introduction ... 97
 - 5.3.2 Samples and Petrography ... 97
 - 5.3.3 Results ... 98
 - 5.3.4 Discussion ... 100
 - 5.3.5 Conclusions .. 106
- **5.4 Sulphides** .. 113
 - 5.4.1 Introduction ... 113
 - 5.4.2 Samples .. 113
 - 5.4.3 Results .. 113

Chapter 6 – Whole-rock chemistry .. 117

- **6.1 Introduction** ... 117
- **6.2 Results** ... 117
 - 6.2.1 Major and minor element chemistry 117
 - 6.2.2 Platinum-group element chemistry 118
- **6.3 Discussion** ... 121
 - 6.3.1 Major and minor element chemistry 121

Chapter 7 - In-situ laser ablation ICP-MS analysis of ruthenium in chromite .. 133

- **7.1 Introduction** ... 133
- **7.2 Samples** .. 133
- **7.3 Analytical methods** ... 135
 - 7.3.1 In-situ laser ablation ICP-MS analysis 135
Chapter 7 – Results

7.4 Results

- 7.4.1 In-situ laser Ablation ICP-MS
- 7.4.2 Carius tube digestion isotope dilution ICP-MS

7.5 Discussion

7.6 Conclusions

Chapter 8 – Ruthenium in chromite from komatiites, komatiitic basalts, and ferro-picrites

8.1 Introduction

8.2 Results

- 8.2.1 Interpretation of the Ru compilation plots
- 8.2.2 Ruthenium variability in chromite

8.3 Discussion

- 8.3.1 Ruthenium variation in chromite
- 8.3.2 Ru contents vs chromite composition
- 8.3.3 The role of oxygen fugacity
- 8.3.4 Other factors controlling the fractionation and concentration of Ru
- 8.3.5 Timing of sulphide saturation
- 8.3.6 The significance of single high-Ru grains

8.4 Conclusions

Chapter 9 – Anomalous sulphur-poor platinum-group element mineralisation in komatiitic cumulates, Mount Clifford, Western Australia

9.1 Introduction

- 9.1.1 Models for the origin of PGE mineralisation

9.2 Sampling and Analytical Methods

9.3 Results

- 9.3.1 Petrography and Mineralogy
- 9.3.2 Platinum-group Minerals
- 9.3.3 Whole-rock Geochemistry
Table of contents

9.4 Discussion .. 193
9.5 Conclusions ... 197

Chapter 10 - The role of chromite, olivine and platinum-group minerals in the fractionation and concentration of platinum-group elements ... 199

10.1 Introduction .. 199
10.2 Samples and methodology .. 199
10.3 Results .. 200
 10.3.1 Chromite ... 200
 10.3.2 Olivine ... 200
 10.3.3 Platinum-group minerals .. 203
10.4 Discussion ... 204
 10.4.1 PGE contents of the chromite separates ... 205
 10.4.2 PGE contents of the olivine separates ... 209
 10.4.3 Formation of platinum-group minerals .. 211
10.5 Conclusions ... 212

Chapter 11 – Ruthenium content of chromite: Implications for the exploration for magmatic nickel-sulphide deposits ... 213

11.1 Introduction .. 214
11.2 Chromite and olivine trace element composition as indicator for nickel-sulphide mineralisation ... 214
 11.2.1 Chromite ... 214
 11.2.2 Olivine ... 215
11.3 Limitations of the whole-rock approach and advantages of the in-situ LA-ICP-MS studies .. 216
11.4 False positives ... 216
11.5 Ideas for future research ... 217
 11.5.1 Vectors towards massive ore zones ... 218
Table of contents
List of Figures

Figure 2-1: Idealised cross-section through a fully differentiated, layered komatiite flow .. 36

Figure 2-2: Phase relations for komatiites after Arndt, (1976) .. 38

Figure 2-3: Pt/Ti vs age of komatiites from selected localities and petrogenetic affinity .. 42

Figure 3-1: Komatiite world location map .. 53

Figure 3-2: Locality map of the Eastern Goldfields Superterrane of the Yilgarn Craton illustrating its high nickel-sulphide endowment .. 56

Figure 3-3: Stratigraphy of the Mount Clifford dunite body .. 58

Figure 3-4: Idealised stratigraphy of the Betheno dunite body showing the position of the samples MKT 528 – 107.3, 173.25, 277.9, and 429.4 .. 59

Figure 3-5: Stratigraphy of drill core CCD11a in the Cliffs Ultramafic Belt .. 59

Figure 3-6: Intersection through the overturned sequence at The Horn, borehole LWDD-754 .. 60

Figure 3-7: Stratigraphy of the Airport Ultramafic / Wiluna .. 61

Figure 3-8: Microscope image of the dendritic olivine texture at Murphy Well, transmitted light .. 62

Figure 3-9: Simplified stratigraphy of borehole BSD-64 .. 63

Figure 3-10: Stratigraphy of Collurabbie’s Beta Horizon .. 64

Figure 3-11: Location map of the Abitibi Greenstone belt, showing Fred’s Flow (FF) and the Boston Creek Flow (BCF) .. 66

Figure 3-12: Locality map of the Central Lapland Greenstone Belt (CLGB) .. 67

Figure 3-13: Locality map of Pechenga .. 68

Figure 4-1: Propagated error for ID resulting from varying isotopic ratios in the sample and spike (x/y) .. 79

Figure 5-1: Back-scattered electron images of chromites .. 85

Figure 5-2: Compositions of chromites from komatiites in (A) a trivalent cation plot Fe vs. Cr vs. Al; and (B) magnified for the relevant proportion .. 87

Figure 5-3: TiO₂, Fe³⁺/(Cr⁺+Al⁺+Fe³⁺) and ZnO, NiO, and MnO vs. Mg/(Mg+Fe²⁺) in chromites from komatiites .. 88

Figure 5-4: Compositions of chromites from komatiitic basalts and ferropicrites in the trivalent cation plot Fe vs. Cr vs. Al .. 88
List of figures

Figure 5-5: TiO$_2$ vs. Fe$^{3+}$/(Cr+Al+Fe$^{3+}$) and ZnO, NiO, and MnO vs. Mg/(Mg+Fe$^{2+}$) in chromites from komatiitic basalts and ferro-picrites. .. 89

Table 5-1: Representative electron micro-probe analysis of chromites from komatiites ... 90

Table 5-1 (continued): Representative electron micro-probe analysis of chromites from komatiites. .. 91

Table 5-1 (continued): Representative electron micro-probe analysis of chromites from komatiites. .. 92

Table 5-1 (continued): Representative electron micro-probe analysis of chromites from komatiites. .. 93

Figure 5-6: Transmitted light microscope images of the sample mineralogy 99

Figure 5-7: Nickel content of olivine vs the forsterite (Fo) content 102

Figure 5-8: Chromium content of olivine vs the forsterite content 103

Figure 5-9: Calcium content of olivine vs the forsterite content 104

Figure 5-10: Trace element concentrations of olivine vs. MgO 107

Figure 5-10 (continued): Trace element concentrations of olivine vs. MgO. 108

Figure 5-10 (continued): Trace element concentrations of olivine vs. MgO. 109

Figure 5-11: Backscattered electron images of the sample mineralogy 114

Figure 5-11: CI chondrite normalised PGE plots for sulphides from Betheno 114

Figure 6-1: Al$_2$O$_3$ vs. TiO$_2$ in komatiites and komatiitic basalts 119

Figure 6-2: Al$_2$O$_3$, SiO$_2$, FeO, and Ni vs. MgO in komatiites and komatiitic basalts .. 119

Figure 6-3: Sulphur vs. Ni in komatiites and komatiitic basalts 120

Figure 6-4: Whole-rock Pt and Pd contents vs. MgO and Cr of rocks investigated within this study .. 120

Figure 6-4 (continued): Whole-rock Ru and Ir contents vs. MgO and Cr of rocks investigated within this study .. 121

Figure 6-5: Theoretical Cr–MgO compositions of komatiitic liquids and cumulates after Barnes (1998). .. 122

Figure 6-6: Chromium–MgO compositions of the samples investigated in this study. .. 123

Figure 6-7: CI-chondrite normalised PGE and Ni plots of komatiites 125

Figure 6-7 (continued): CI-chondrite normalised PGE and Ni plots of komatiites 126
Figure 6-8: CI chondrite normalised PGE and Ni plots of komatiitic basalts and ferro-picrites. ... 126

Figure 6-9: CI chondrite normalised [N] Pd/Ir and Pd/Ru vs MgO of the samples included in this study of komatiitic basalts and ferro-picrites. 127

Figure: 6-10: Whole-rock Ru-Cr variation in S-poor (<0.25 wt %) komatiites from the Agnew Wiluna Belt. .. 129

Figure 7-1: BSE images of chromite in komatiite and komatiitic basalt 134

Figure 7-2: Comparison of nickel values obtained from electron microprobe analysis and laser ablation ICP-MS analysis .. 136

Figure 7-3: Ruthenium concentrations as analyzed by LA-ICP-MS 141

Figure 7-4: Repeated Ru analysis of the PGE-A .. 142

Figure 7-5: Repeated Ru analysis of the LCR-1 chromite 142

Figure 7-6: Ruthenium in komatiitic chromite as analyzed by LA-ICP-MS ... 145

Figure 7-7: Time resolved analysis diagram obtained by LA-ICP-MS illustrating 146

Figure 8-1: Ruthenium concentrations in chromite grains from komatiites 157

Figure 8-2: Ruthenium in chromites from komatiitic basalts 158

Figure 8-3: Ruthenium in chromites from ferro-picrites 159

Figure 8-4: Major and trace element composition of chromites from komatiites (left) and komatiitic basalts (right) .. 168

Figure 8-4 (continued): Major and trace element composition of chromites from komatiites (left) and komatiitic basalts (right) 169

Figure 8-4: Major and trace element composition of chromites from komatiites (left) and komatiitic basalts (right). .. 170

Figure 8-5: Plot of Ru vs. Fe\(^+/(Fe^{++}+Fe^{+})\) for (A) chromite from komatiites and (B) komatiitic basalts and ferro-picrites 172

Figure 9-1: Sulphide inclusion in chromite grains 182

Figure 9-2: Backscatter electron images of the sample mineralogy 185

Figure 9-3: Mineral chemistry of Pd-antimonides 186

Figure 9-4: Geochemical profile down drill hole LMCD-009. 188

Figure 9-5: Detailed geochemical profile through the PGE-rich zone 189
List of figures

Figure 9-6: (A) Plot of whole-rock Ir vs Pt for Mount Clifford reef samples and from Wiluna Type-3 mineralisation; (B) Plot of whole-rock Ir vs Mg# for Mount Clifford reef samples compared with S-poor komatiitic cumulates (MgO>40%) from global database (predominantly samples from Yilgarn and Abitibi terranes). ... 192

Figure 9-7: Ni-Mg# and Co-Mg# whole-rock data ... 193

Figure 10-1: Cl chondrite normalised PGE plots for samples from Kurrajong 201

Figure 10-2: Cl chondrite normalised PGE plots for samples from Betheno 202

Figure 10-3: Cl chondrite normalised PGE plots for samples from Mount Clifford ... 202

Figure 10-4: Cl chondrite normalised PGE plots for samples from Perseverance 203

Figure 10-5: Cl chondrite normalised PGE plots for a sample from The Horn 203

Figure 10-6: X-ray composition maps of sample LWDD-754-319.3 from The Horn .. 204

Figure 10-7: SEM image of the sample 9347a from Betheno 204

Figure 10-8: Sulphide inclusion in olivine in a sample from Perseverance 211

Figure 11-1: Whole-rock Ru-Cr variation in S-poor (< 0.6 wt% S) komatiites from the Yilgarn craton. .. 217

Figure 11-2: Ruthenium concentrations in chromites from The Horn in relationship to the proximity to massive nickel-sulphide mineralisation ... 220

Figure 11-3: Geochemical profile down drill core LWDD-754 (The Horn) 221
List of figures
List of figures
List of Tables

Table 2-1: Main geochemical characteristics of different types of komatiites 40
Table 2-2: Classification of komatiite hosted nickel-sulphide deposits 43
Table 3-1: Localities and key variables ... 52
Table 3-2: Mineralisation Scores (MinScores) of the localities investigated within this study .. 54
Table 4-1: Operating parameters of the laser ablation ICP-MS system 74
Table 4-2: Results of repeated analyses of BCR-2g by LA-ICP-MS (average value of seven analyses) and comparison with the reference values published by the U.S. Geological Survey (USGS website, May 2010) ... 74
Table 4-3: Inter-laboratory comparison of PGE analysis between Geolabs and Ultratrace ... 75
Table 4-4: Comparison of duplicate PGE analysis of samples from Perseverance using (a) Carius tube digestion isotope dilution ICP-MS analysis at GEMOC and (b) nickel-sulphide fire-assay analysis at Ultratrace Laboratories ... 76
Table 4-5: Operating parameters of the ICP-MS system (PGE solution analysis) 81
Table 4-6: Repeated analyses of the OKUM reference material .. 82
Table 5-2: Representative electron micro-probe analysis of chromites from komatiitic basalts and ferro-picrites ... 94
Table 5-2 (continued): Representative electron micro-probe analysis of chromites from komatiitic basalts and ferro-picrites ... 95
Table 5-2 (continued): Representative electron micro-probe analysis of chromites from komatiitic basalts and ferro-picrites ... 96
Table 5-3: Average major and trace element composition of olivine 110
Table 5-3 (continued): Average major and trace element composition of olivine 111
Table 5-3 (continued): Average major and trace element composition of olivine 112
Table 5-4: Major, trace, and platinum-group element analysis of sulphides. Major elements by EMP, PGE by LA-ICP-MS ... 115
Table 5-4 (continued): Major, trace, and platinum-group element analysis of sulphides. Major elements by EMP, PGE by LA-ICP-MS ... 116
List of tables

Table 6-1: Representative whole-rock major, trace, and platinum-group element analyses of samples included in this study. All values are normalised to 100%-volatile free compositions. ... 130

Table 6-1 (continued): Representative whole-rock major, trace, and platinum-group element analyses of samples included in this study. All values are normalised to 100%-volatile free compositions. ... 131

Table 6-1 (continued): Representative whole-rock major, trace, and platinum-group element analyses of samples included in this study. All values are normalised to 100%-volatile free compositions. ... 132

Table 7-1: Operating parameters of the laser ablation ICP-MS system 136

Table 7-2: Results of repeated analyses of LCR-1 by LA-ICP-MS and comparison with literature values ... 137

Table 7-3: Argide interferences on PGE isotopes in LA-ICP-MS 140

Table 7-4: Results of repeated analyses of chromite grains from the sample MW (Murphy Well) including 1-σ errors and lower limits of detection (LLD) calculated in Glitter ... 147

Table 7-5: Carius tube digestion ID ICP-MS data for Kurrajong chromite concentrations and OKUM standard concentrations obtained during this study . 148

Appendix Chapter 7-A-A Kurrajong (KJD-A) chromite analysis. Major and trace element analysis by EMP; Ru analysis by LA-ICP-MS ... 150

Appendix Chapter 7-A-B Kurrajong (KJD-B) chromite analysis. Major and trace element analysis by EMP; Ru analysis by LA-ICP-MS ... 151

Appendix Chapter 7-A-C Murphy Well (MW-2303-8) chromite analysis. Major and trace element analysis by EMP; Ru analysis by LA-ICP-MS ... 152

Appendix Chapter 7-A-D Collurabbie (CLD-46-135.9) chromite analysis. Major and trace element analysis by EMP; Ru analysis by LA-ICP-MS ... 153

Table 8-1: Summary of in-situ laser ablation ICP analyses of Ru in chromites from komatiites .. 160

Table 8-1 (continued): Summary of in-situ laser ablation ICP analyses of Ru in chromites from komatiites .. 161

Table 8-2: Summary of in-situ laser ablation ICP analyses of Ru in chromites from komatiitic basalts .. 162

Table 8-3: Summary of in-situ laser ablation ICP analyses of Ru in chromites from ferro-picrites .. 163

Table 8-5: Overview of the characteristics of the sampled localities in relation to prospectivity for nickel-sulphide mineralisation ... 175

Table 9-1: Representative microprobe analyses of platinum-group minerals 184
List of tables

Table 9-2: Major and trace element concentrations in the PGE-rich zone (Geneanalysis data) ... 191

Table 9-3: Major, trace and PGE concentrations in the PGE-rich zone (GeoScience data) ... 192

Table 9-4: Representative microprobe analysis of olivine 194

Table 10-1: PGE contents of chromite separates. All concentrations in ppb.
Values from Puchtel and Humayun (2001) are shown for comparison 200

Table 10-2: PGE contents of olivine separates. All concentrations in ppb.
Representative values from Puchtel and Humayun (2001) are shown for comparison ... 201

Table 10-3: Comparison of the Pt/Pd ratios in whole-rock samples and chromite separates from the PGE-reef at Mount Clifford 207

Table 10-4: Parameters for the mass balance calculations 208

Table 10-5: Results of the mass balance calculations 209
ABSTRACT

Platinum-group elements (PGE) are important as petrogenetic tracers, but owing to their low abundances and complex behaviour they are among the least understood elements in geochemistry. This study investigates the mechanisms of PGE fractionation in ultramafic systems (komatiites, komatiitic basalts, ferro-picrites) and focuses on the role of chromite. Samples from a range of occurrences have been analysed to assess potential controls on PGE behaviour, such as geochemical affinities (Munro-type and Karasjok-type), age (2.0 and 2.7 Ga), emplacement styles, metamorphic grade and nickel-sulphide mineralisation endowment and style.

Data obtained by in-situ laser ablation ICP-MS analysis provide the first direct evidence that Ru can exist in solid solution in chromite with concentrations up to several hundred ppb. The data show that the behaviour of Ru is dominantly controlled by the sulphide-saturation state. In systems that did not equilibrate with a sulphide liquid, chromites have distinctly higher Ru concentrations than chromites from systems that interacted with a sulphur-source during crystallisation. Carius tube digestion isotope dilution ICP-MS analyses of chromite separates confirm the accuracy of the in-situ study and also show that Ir is weakly compatible in chromite. Anomalously high Pt and Pd concentrations in chromite separates reflect the presence of platinum-group minerals (PGM) and suggest that PGM are common accessory phases in komatiites. A study of the PGE-mineralogy shows that PGM in komatiites can be of magmatic and post-magmatic origin and that they often remain undetected due to grain sizes less than 5 µm. As a consequence, the presence of PGE minerals has to be taken into account when whole-rock PGE signatures are interpreted.

The association of Ru-poor chromites with Ni mineralisation and Ru-rich chromites with barren systems provides a new tool for the exploration for nickel-sulphide deposits. This model applies to all magma types and is independent of the age, the geochemical affinity, and other sample characteristics.
ACKNOWLEDGEMENTS

This thesis results from the collaboration between Macquarie University / GEMOC and the Centre for Exploration Targeting at the University of Western Australia. This study used instrumentation funded by ARC LIEF and DEST Systematic Infrastructure and Macquarie University. It was supported by an IMURS scholarship and a PGRF travel fund (Higher Degree Research Unit, Macquarie University), by the AMIRA Project P710a, and by the MERIWA grant M388.

I want to thank all the people who have been implicated in my work during this PhD project and particularly my official supervisors Norman Pearson, Suzanne O’Reilly, and Marco Fiorentini. I would like to express my special thanks to Steve Barnes who was a great help along the way. I thank my office mates Alan Kobussen, Cara Donnelly, and June Chevet for sharing their knowledge and experience. I also thank all my co-workers at GEMOC who helped me on more than one occasion to solve problems outside my areas of expertise: Kelsie Dadd, Peter Wieland, Mei-Fei Chu, Will Powell, Kevin Grant, Dick Flood, Bill Griffin, Carol McMahon, Sally-Ann Hodgekiss, Michael Engelbreten, and Nigel Wilson. Also, I thank Belinda Godel, Steve Beresford, and Steve Barnes (yes, again!) for their help during the past years.

Finally, I acknowledge the support and companionship from my friends and family, and particularly my toki Christina.