Purcell effect in a magnetic cavity

A. Rahmani, C. G. Poulton, M. J. Steel, P. C. Chaumet, G. W. Bryant

1Department of Mathematical Sciences, University of Technology Sydney, NSW 2007, Australia
2MQ Photonics Research Centre and Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems, Department of Physics and Astronomy, Macquarie University, NSW 2109 Australia
3 Institut Fresnel, CNRS, Aix-Marseille Université, Campus de St-Jérôme 13013 Marseille, France
4 National Institute of Standards and Technology, Atomic Physics Division and Joint Quantum Institute Gaithersburg, MD 20899-8423, USA

Adel.Rahmani@uts.edu.au

Abstract: We study dipole emission inside a homogeneous, magnetic sphere. For fixed refractive index, the largest emission rate for an electric source is observed, in general, when the magnetic permeability is maximized. The corresponding result for a magnetic source follows by symmetry.

© 2010 Optical Society of America

OCIS codes: 290.0290 Scattering, 160.3918 Metamaterials

It is well-established that the radiation of sources depends on the physical environment in the vicinity of the source [1]. In particular, a source placed in an electromagnetic cavity can have its emission enhanced or suppressed, depending on the cavity properties. Until recently it was thought possible to tune only the electric properties of the cavity (via the permittivity \(\varepsilon \)), however metamaterials offer the possibility of controlling both the electric and magnetic responses of a medium, leading to markedly different radiation dynamics [2]. We study here the emission of sources placed in metamaterial cavities, in which the magnetic properties may be controlled by changing the permeability \(\mu \). We investigate the circumstances in which emission may be enhanced or suppressed, and outline how the inclusion of magnetic effects leads to differences in the physics of radiating sources.

Consider a classical oscillating electric dipole, with normalized dipole moment \(\mathbf{p} \), located at position \(r_0 \) in vacuum. We denote by \(\Gamma_{\text{env}} \) the rate at which the dipole radiates energy. If we now consider the same dipole placed in a given environment, the emission rate changes to \(\Gamma_{\text{env}} \) given by

\[
\Gamma_{\text{env}} = \Gamma_{\text{\infty}} + \frac{3}{2k_0} \mathbf{p} \cdot \Im \left(\bar{G}_{\text{env}}(r_0, r_0; \omega) \right) \cdot \mathbf{p},
\]

where \(\bar{G}_{\text{env}} \) is the field-susceptibility tensor (FST) [3] associated with the environment, and \(k_0 \) is the vacuum wavenumber.

![Normalized emission rate](image)

Fig. 1. Normalized emission rate for an electric dipole at the center of a spherical cavity (radius \(a \), refractive index \(n = \sqrt{\varepsilon\mu} = 2 \)) in vacuum versus \(k_0a \). The inset gives the value of \((\varepsilon, \mu) \).

Classically, the above expression gives the normalized power losses for an oscillating electric dipole. In the quantum-mechanical picture, the same expression corresponds to the spontaneous emission rate for an electric dipole transition...
in the weak-coupling regime. Note that Eq. (1) applies to lossy, anisotropic and dispersive media, provided the material response is linear in the fields. A similar expression can be derived for a magnetic dipole source, or deduced from the electric case using symmetry arguments. Therefore, provided one knows the FST associated with a given structure, one can, in principle, study the dynamics of a source placed inside the structure.

One of the simplest cases of a magnetic cavity is a lossless homogeneous, isotropic, spherical magnetodielectric cavity in vacuum, with a radius \(a \) and refractive index \(n = \sqrt{\varepsilon \mu} \), where \(\varepsilon \) and \(\mu \) are the positive (scalar) permittivity and permeability, respectively. For this system, the corresponding FST can be calculated analytically using Chew’s approach [4]. In Fig. 1 we plot the emission rate, normalized to free-space, for an electric dipole source at the center of the cavity versus the normalized cavity size \(k_0a \). The refractive index of the cavity is fixed at \(n = 2 \) and the value of the pair \((\varepsilon, \mu)\) is given in the inset. As expected the emission rate oscillates as we increase the size of the cavity introducing additional resonant modes. In the case \(\varepsilon = \mu = 2 \) the oscillations are quickly damped because the impedance of the material inside the cavity matches the impedance of vacuum. However, the most interesting feature is that the emission rate for the electric source is in general maximized when \(\varepsilon \) is maximized, and therefore since \(n \) is fixed, \(\mu \) is minimized. Hence the emission rate of the electric source is in general most enhanced when the magnetic response of the cavity is maximized. For a magnetic source, the roles of \(\varepsilon \) and \(\mu \) are exchanged. This is due to the asymmetric role played by \(\varepsilon \) and \(\mu \) in the emission rate of an electric source— for instance, for an infinite medium with refractive index \(n \) the density of states scales as \(n^3 \), whereas the electric field scales as \(1/\sqrt{n} \).

The results are slightly different if the source is moved off-center, as seen in Fig. 2 for an electric dipole source located \(0.6a \) from the center. We must now consider both radial and tangential orientations of the dipole moment, however, while the values of the emission rate are different, the two cases are qualitatively similar. For a small cavity \((k_0a \lesssim 5) \) the results are similar to the centered-source case: the emission rate is maximized for an electric (magnetic) source when \(\varepsilon \) \((\mu) \) is maximized. However, as the cavity gets larger, sharp resonances appear corresponding to the coupling of the source to high-Q modes inside the sphere. At certain frequencies, the emission rate for \(\varepsilon = 4, \mu = 1 \) can now exceed the rate for \(\varepsilon = 1, \mu = 4 \). Nonetheless, the overall picture remains that for a given refractive index, the emission rate of an electric source is most enhanced when the magnetic response of the material is maximized. For a magnetic source the opposite holds.

![Fig. 2. As for Fig. 1 for a source offset 0.6a from the center of the cavity. (a) radial dipole, (b) tangential dipole.](JTuI40.pdf)

Finally, using the discrete dipole approximation [2], we have found that discrete cavities alter this picture by introducing local-field corrections that depend on \(n \) and \(k_0a \) in a radically different way. The dimensional dependence of the local density of states also means that different results are found for the corresponding two-dimensional problem. Both these facts will play a critical role when the influence of the microstructure of metamaterials on the emission rate is explicitly considered.

References
CLEO: 2011
CONFERENCE OVERVIEW

TOP 10 REASONS TO ATTEND CLEO: 2011

HEAR INNOVATIVE RESEARCH. SHARE IDEAS. NETWORK.

CLEO: 2011, formerly CLEO/QELS, offers complete and up-to-date technical programming, rich with in-depth content and dynamic research, peer-reviewed by an esteemed cadre of industry and academic leaders from the optics and photonics community.

- World-renowned, peer-reviewed program organized by esteemed leaders in the industry and academia
- 1200 technical presentations
- More than 100 prominent, invited speakers
- Plenary Sessions – 4 dynamic keynote speakers will share their vision on timely topics
- 20 short courses offering expert instruction on essential topics
- 7 Symposia & 26 Tutorials
- 3 Poster Sessions
- More than 300 exhibiting companies showcasing the latest products at CLEO: Expo
- Free exhibit floor programming on market trends, commercial development, technology transfer and a FREE Job Fair
- Opportunity to connect with colleagues, experts from academia and industry, forge new relationships and exchange ideas

CLEO: 2011 GENERAL CHAIRS

CLEO: QELS–Fundamental Science
General Co-Chairs
Hal Metcalf, SUNY Stony Brook, USA
Vladimir Shalaev, Purdue Univ., USA

CLEO: Science & Innovations
General Co-Chairs
Timothy Carrig, Lockheed Martin, USA
Kaoru Minoshima, Natl. Inst. of Advanced Industrial Science and Technology, Japan

CLEO: Applications & Technology
General Chair
Timothy Carrig, Lockheed Martin, USA

CLEO: 2011 PROGRAM CHAIRS

CLEO: QELS–Fundamental Science
Jacob Khurgin, Johns Hopkins Univ., USA
Martin Wegener, Karlsruhe Inst. of Technology, Germany

CLEO: Science & Innovations
A. Catrina Bryce, Univ. of Glasgow, UK
Ingmar Hartl, IMRA America, Inc., USA

CLEO: Applications & Technology
James Tunnell, Univ. of Texas, USA

IMPORTANT DATES*

- LATE FEBRUARY Author Notifications Sent
- MARCH Conference Program Planner Available
- 21 MARCH Advance Registration Deadline
- 23 MARCH Post Deadline Submission Deadline
- 1 APRIL Housing Deadline
- 1–6 MAY Technical Conference
- 1–3 MAY Short Courses
- 3–5 MAY CLEO: Expo
- 3–5 MAY CLEO: Market Focus*
 CLEO: Technology Transfer*
 CLEO: Job Fair*

*View conference schedule for exact programming dates.