Enhanced Efficiency of UV Second Harmonic and Sum Frequency Generation from Copper Vapor Lasers

DAVID W. COUTTS, MARK D. AINSWORTH, AND JAMES A. PIPER

Abstract—Enhanced efficiency for nonlinear second harmonic and sum frequency generation in ß-BBO from the two copper vapor laser (CVL) outputs (511 and 578 nm) is reported. Over 460 mW UV output at 255 nm (SHG of 511 nm) and 271 nm (SFG), and up to 300 mW at 289 nm (SHG of 578 nm) have been obtained with wall plug efficiencies up to 0.016% for a 16 W CVL with an $M = 26.5$ off-axis unstable cavity.

There is an increasing demand for ultraviolet laser sources of moderate average power (>1 W) for industrial applications such as photolithography [1]. Copper vapor lasers with high average power (up to 100 W) at high pulse repetition rates (~10 kHz) and relatively high wall plug efficiency (up to 1%) in the green (510.6 nm) and the yellow (578.2 nm) are now widely available commercially. Second harmonic and sum frequency generation (SHG and SFG) of CVL output therefore represents an attractive approach to UV source development. However, doubling efficiencies from CVL outputs have been disappointing due to the difficulties of achieving high focal power densities in the nonlinear medium resulting from the poor beam quality from the CVL.

Use of high magnification unstable optics and injection seeding techniques have recently led to considerable improvements in CVL beam quality, with consequent improvements in the nonlinear conversion efficiency. Kuwada et al. [2] have reported over 230 mW at 255.1 nm by SHG in ß-BBO from the 510.6 nm output of a 10 W CVL and Naylor et al. [3] have reported up to 630 mW at 255.1 nm based on a 100 W injection seeded CVL. In earlier experiments in our own laboratory with a 7 W CVL we have obtained similar SHG efficiencies in BBO and KDP, and reported sum frequency generation (510.6 + 578.2 nm) at 271.2 nm with conversion efficiencies comparable to SHG [4].

Further improvements in SHG and SFG efficiencies require careful attention to the design of the CVL cavity to achieve a higher fraction of the output power within the high quality (low divergence) portion of the beam, and to delivery optics in the nonlinear conversion arrangement. We now report recent experiments in SHG and SFG based on a higher power (16 W) CVL and aimed at optimizing CVL resonator design and focusing geometries. SHG (255 nm) and SFG (271 nm) powers of 460 and 465 mW, respectively, have been achieved at conversion efficiencies from the nonASE component of the CVL beam up to 9.6% and wall plug efficiency ~0.016%.

The experimental arrangement is shown in Fig. 1. The CVL is fitted with either an on-axis edge-coupled unstable cavity (positive branch confocal) [Fig. 1(a)] or an off-axis cavity of the same type [Fig. 1(b)] [5]. The resonators are each case formed by a high reflector curved mirror ($R = 4$ m), and a spot mirror on a nominally zero power AR-coated meniscus lens with radii of curvature $R = 246$, 75, or 39 mm, giving magnifications of 16, 26.5, and 51 times, respectively. For all cases, the reflecting films had $R > 99.9%$ for both 510.6 and 578.2 nm. An intracavity polarizing cube was positioned near the high reflector to give a polarized output (polarization 100:1).

The output of the CVL is focused directly into the nonlinear crystal with lens L_1 (spherical or preferably achromatic). The crystal outputs are recollimated with a short focal length silica lens L_2 ($f = 50$ mm) and the UV component separated with a quartz prism P. Average powers were measured with a thermal power meter (Scientech 360001) and pulse shapes recorded with a vacuum photodiode (Hamamatsu R1193U-02) and displayed on a fast oscilloscope (Tektronix 7904). The nonlinear crystal used...
was β-BBO of dimensions 6 × 8 × 7 mm cut at an angle of 51° corresponding to the phase match angle for SHG of the green, but the large aperture of the crystal enabled angle tuning for both SFG (271 nm) and SHG of the yellow (at 289.1 nm) as well. The crystal was mounted in a precision gymbal mount for accurate orientation.

For present experiments the CVL (plasma tube dimensions 1 m × 25.5 mm diameter) was operated at a pulse repetition frequency of 7 kHz drawing 2.9 kW from the high-voltage power supply. Under these excitation conditions with a plane–plane resonator (HR-4% coupler), the total unpolarized output power was 16.8 W with a green to yellow ratio of ~3:2. The performance of the various confocal edge coupled unstable cavities was evaluated for the CVL operating under these same excitation conditions. CVL beam divergence was measured by focusing the beam with a 600 mm focal length achromatic lens and projecting an enlarged image of the focus on a distant screen. In normal operation the ASE component was removed by spatial filtering, which was also used to analyze beam quality.

Unstable resonator parameters and associated CVL beam characteristics are summarized in Table I. Note the total output power for the unstable cavities is similar to that for the plane–plane cavity, but after removal of the high divergence ASE component, available beam power is reduced by a factor of about two. However, the beam divergence of the non-ASE component also decreases progressively, allowing substantial increases in focal power densities. The performance of the cavities can be compared conveniently by reference to a figure of merit given by non-ASE power divided by the square of the beam divergence. Note that the M = 26.5 cavity is optimized for the CVL tube diameter of 25.5 mm, whereas the M = 16 and M = 51 cavities are optimal for larger tube diameters, 33 and 51 mm, respectively.

The M = 26 off-axis unstable cavity gave best performance in terms of available power density, giving 8.4 W average power in a beam with a time averaged divergence of 0.16 mrad (1/e full angle), and a figure of merit more than three times larger than the equivalent on-axis cavity. Approximately 3.8 W (45% of the non-ASE component) was diffraction limited with a beam divergence of ~45 μrad. The off-axis cavity takes advantage of the large delay (~15 ns) observed for the peak gain at the center of the laser tube with respect to that near the walls, a phenomenon which is observed in many high-power CVL’s [6], [7]. The off-axis cavity allows a low divergence optical field to build up before the maximum gain occurs in the bulk of the lasing medium giving a larger fraction of diffraction limited output.

Table II shows results for SHG and SFG in BBO where average powers in the UV account for avoidable losses totalling 20% at the surfaces of lens L2 and the prism P (both of which had AR coatings).

Where a spherical lens is used for L1, spherical aberration reduces the focal power density below that which is due to beam divergence alone, hence tighter focusing is required for significant UV generation. The maximum powers obtained for SHG of the green and yellow and for SFG were 275 mW (at 255.3 nm), 140 mW (at 289.1 nm), and 170 mW (at 271.2 nm), respectively, obtained with the M = 26.5 off-axis unstable cavity and a (spherical) f = 500 mm focusing lens.

Chromatic aberrations in the spherical lenses also reduce the efficiency of sum frequency generation by reducing the spatial overlap of the two CVL output wavelengths within the crystal. These problems are overcome by using an achromatic doublet for lens L1 where both

![Table I](https://example.com/table1.png)

<table>
<thead>
<tr>
<th>Cavity</th>
<th>M = 16</th>
<th>M = 26.5</th>
<th>M = 51</th>
<th>M = 26.5^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot Mirror Diameter</td>
<td>2 mm</td>
<td>1 mm</td>
<td>1 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>Total Power</td>
<td>17.5 W</td>
<td>16.0 W</td>
<td>16.5 W</td>
<td>16.0 W</td>
</tr>
<tr>
<td>Non-ASE power (P)</td>
<td>8.9 W</td>
<td>8.0 W</td>
<td>6.2 W</td>
<td>8.4 W</td>
</tr>
<tr>
<td>Beam Divergence (Δβ)</td>
<td>0.94 mrad</td>
<td>0.28 mrad</td>
<td>0.23 mrad</td>
<td>0.16 mrad</td>
</tr>
<tr>
<td>Figure of Merit (P/Δβ^2)</td>
<td>10</td>
<td>100</td>
<td>120</td>
<td>330</td>
</tr>
<tr>
<td>Yellow Fraction</td>
<td>45%</td>
<td>45%</td>
<td>43%</td>
<td>42%</td>
</tr>
</tbody>
</table>

^aOff-axis cavity.

![Table II](https://example.com/table2.png)

<table>
<thead>
<tr>
<th>Cavity</th>
<th>F/α</th>
<th>M = 16</th>
<th>M = 26.5</th>
<th>M = 51</th>
<th>M = 26.5^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>255 nm</td>
<td>205</td>
<td>245</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>271 nm</td>
<td>150</td>
<td>140</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>289 nm</td>
<td>95</td>
<td>90</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>255 nm</td>
<td>185</td>
<td>215</td>
<td>245</td>
<td>c</td>
</tr>
<tr>
<td>271 nm</td>
<td>140</td>
<td>110</td>
<td>115</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>289 nm</td>
<td>95</td>
<td>80</td>
<td>125</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>255 nm</td>
<td>165</td>
<td>190</td>
<td>230</td>
<td>275</td>
</tr>
<tr>
<td>271 nm</td>
<td>125</td>
<td>145</td>
<td>155</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>289 nm</td>
<td>80</td>
<td>90</td>
<td>95</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>400^a</td>
<td>255 nm</td>
<td>205</td>
<td>215</td>
<td>185</td>
<td>460</td>
</tr>
<tr>
<td>271 nm</td>
<td>170</td>
<td>165</td>
<td>135</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>289 nm</td>
<td>80</td>
<td>80</td>
<td>55</td>
<td>230</td>
<td></td>
</tr>
</tbody>
</table>

^aOff-axis cavity.

^AR-coated achromatic lens.

^Beyond damage threshold.
chromatic and spherical aberrations are corrected. For the
M = 26.5 off-axis cavity, a dramatic increase in conversion
efficiency is observed when the f = 400 mm achro-
matic focusing lens is used. In this case, average powers
for SHG of the green and yellow were 460 and 230 mW,
respectively, and 465 mW for SFG.

The nonlinear conversion efficiencies can be expressed
in three ways as in Table III. Conversion efficiencies based
on the relevant spectral components of the non-ASE power
are 9.6% for SHG at 255 nm, 6.4% for SHG at 289 nm,
and 5.5% for SFG at 271 nm. These figures are the high-
est reported to date for SHG and SFG of a CVL. Conver-
sion efficiencies can also be calculated based on the total
laser power and represent the potential nonlinear UV out-
put achievable from a given CVL. Efficiencies based on
total CVL output power for SHG at 255 nm and SFG are
both 2.9%, and for SHG 1.4% at 289 nm. Finally, UV
generation efficiencies can be calculated based on the
power drawn from the CVL high-voltage supply and these
can be used to compare CVL based UV generation with
other UV sources. The total CVL-UV system efficiencies
were 0.016% for SFG and SHG at 255 nm and 0.008%
for SHG at 289 nm. These values are typically an order
of magnitude greater than wall plug efficiencies for the
UV outputs available from high-power argon ion lasers
(i.e., directly in the 300 nm region or by frequency-dou-
bling to 257 nm [8]).

A model for SHG of focused partially coherent beams
has been proposed by Kuroda et al. [2] which predicts a
conversion efficiency in BBO of ~3% for the 2.6 W of
0.16 mrad divergence green output, and a conversion ef-
iciency in excess of 12% for the ~2 W of diffraction
limited green output. This gives a calculated total SHG
conversion efficiency of ~9% for the conditions of our
experiment and is close to the measured value of 9.6%.

Multiple shot volume damage thresholds quoted in the
literature [9], [10] are ~32 GW/cm² for BBO, and ~17
GW/cm² for KDP and KD*P, however, surface damage
thresholds are typically an order of magnitude lower than
these. For the present experiments, peak power densities
over 10 GW/cm² have been achieved resulting in visible
damage to the crystal under conditions indicated in Table
II. Optical damage which clearly limits further improve-
ments to UV generation power and efficiency may be
avoided in a number of ways however, for example by
beam shaping and scanning techniques [9], or employing
longer crystals to reduce the surface power densities.

Still higher conversion efficiencies may be achieved by
operating the laser at a lower pulse-repetition frequency,
where there is an increase in CVL peak power, and the
longer pulse duration gives further improvements in output
beam quality. In preliminary experiments in which the
CVL PRF was reduced from 7 to 4 kHz with the same
input power and with the M = 26.5 off-axis cavity, rapid
damage to the nonlinear crystal resulted for all L1 focal
lengths up to 1.0 m. Nevertheless we measured a 50% increase in
SFG power in KDP and a 33% increase in
SHG of the green in BBO, where a 1000 mm focal length
lens was used for L1. Note that the 9% optical conversion
efficiency for SHG at 255 nm reported by Kuroda et al.
was for a CVL operating at a PRF of 4 kHz, whereas we
have achieved an optical conversion efficiency of 9.6% at
the greater PRF of 7 kHz. If crystal damage could be
avoided, optical conversion efficiencies well in excess of
10% could be achieved by operating the CVL at a lower
PRF. Also note that enhancement of the yellow compo-
nent of the CVL output using a R590 dye amplifier-con-
verter [11] is expected to result in significantly enhanced
powers at 289.1 nm by SHG. Preliminary experiments using
this approach have thus far demonstrated UV powers
at 289.1 nm close to 500 mW.

In summary, we have generated over 460 mW output power
at 255.1 and 271.2 nm with a wall-plug efficiency of
0.016%, and 300 mW at 289.1 nm with a wall-plug
efficiency of 0.008%. Using an off-axis unstable resonator
matched to the plasma tube geometry and gain charac-
teristics, along with focusing lenses with reduced achor-
matic and spherical aberration, has allowed the highest
efficiencies for nonlinear UV generation from a CVL re-
ported to date. Current UV output powers are limited by
crystal damage which may be reduced by modifying the
delivery optics.

REFERENCES

[1] Future prospects and applications for UV and UUV lasers,' in Proc.
"Parametric study on the second harmonic generation of a copper
vapor laser," in Proc. SPIE, vol. 1041, Metal Vapour, Deep Blue,
of a 100-W copper laser for high power UV generation," in Tech.
1989, paper THU2.
crossing of copper vapor laser output in KDP and b-BBO," IEEE J.
parametric design for large-volume short-pulse copper vapour lasers," in
ton, DC, 1987, paper MGI.
Polunin, and V. F. Fedorov, "Radial characteristics of the stimulated
emission of copper-vapour lasers," Sov. Phys. J., vol. 25, pp. 867-
871, 1980.
[7] R. R. Lewis, "Performance of a 100-W copper vapour laser as osci-
[8] T. F. Johnston, Jr., and T. J. Johnson, "Extension of single-fre-

TABLE III

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Non-ASE Laser Power at Relevant Wavelengths</th>
<th>Total Laser Power</th>
<th>Electrical Input Power to Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>255 nm</td>
<td>9.6%</td>
<td>2.9%</td>
<td>0.016%</td>
</tr>
<tr>
<td>271 nm</td>
<td>5.5%</td>
<td>2.9%</td>
<td>0.016%</td>
</tr>
<tr>
<td>289 nm</td>
<td>6.4%</td>
<td>1.4%</td>
<td>0.008%</td>
</tr>
</tbody>
</table>

David W. Coutts was born in Palmerston North, New Zealand, on January 9, 1966. He received the B.Sc. (Hons.) degree from Massey University, Palmerston North, New Zealand in 1987. His Honors research was an investigation of an all-fiber Michelson interferometer. He is presently a graduate student working on technology development, frequency conversion techniques, and beam quality improvement in high-power metal vapor lasers.

Mark D. Ainsworth was born in Orange, Australia, on December 14, 1957. He received the B.Sc. (Hons.) and Ph.D. degrees from the University of New England, Armidale, Australia, in 1979 and 1986, respectively. His Ph.D. dissertation research involved investigations of discharge kinetics of hollow cathode He-Cd" lasers. In 1984, he joined the Department of Physics at the University of Western Australia as Senior Tutor and worked on techniques for discharge analysis using optogalvanic spectroscopy. In 1986 he joined the Center for Lasers and Applications at Macquarie University, Australia. Areas of activity included the research and development of high average power pulsed metal vapor lasers (MVL’s), MVL pumped-dye lasers (both organic and solid-state dye lasers systems) and nonlinear optics. In 1990, he joined the company BHP Aerospace and Electronics as Manager Optoelectronics Product Development. Dr. Ainsworth is a member of the Australian Institute of Physics and the Optical Society of America.

James A. Piper, for a biography see p. 1104 of the June 1990 issue of this *JOURNAL.*